Important Questions For CBSE Class 12 Maths Chapter 4 Determinates

CBSE Class 12 Maths Chapter 4 Determinates Important Questions

Question 1. Three points P(2x, x + 3), Q(0, x) and R(x + 3, x + 6) are eollinear. then x is equal to

  1. 0
  2. 2
  3. 3
  4. 1

Solution: 4. 1

As per the given condition \(\left|\begin{array}{ccc}
2 x & x+3 & 1 \\
0 & x & 1 \\
x+3 & x+6 & 1
\end{array}\right|=0\)

[ar(ΔPQR) = 0]

⇒ 2x (x – x – 6) — 0(x + 3 – x — 6) + (x + 3) {x + 3 – x} =0

or -12x + 3x + 9 = 0 => -9x = -9 => x = 1

Read and Learn More CBSE Class 12 Maths Important Question and Answers

Question 2. If Cij denotes the cofactor of element pij of the matrix P = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & 2 & 4
\end{array}\right]\)
, then the value of C31, C23 is:

  1. 5
  2. 24
  3. -4
  4. -5

Solution: 1. 5

P = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & 2 & 4
\end{array}\right]\) (given)

⇒ C31, C23 = (3-4), {(-1)(2+3)} = 5

Determinants Class 12 Important Questions

Question 3. The system of linear equations 5x + ky = 5; 3x + 3y = 5 will be consistent if:

  1. k ≠ -3
  2. k = -5
  3. k = 5
  4. k ≠ 5

Solution: 4. k ≠ 5

The system of linear equations is given as:

5x + ky = 5 and 3x + 3y = 5

It can be written in matrix form as \(\left[\begin{array}{ll}
5 & k \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]\)

or A X = B

So; the given system of linear equations is consistent if |A| ≠ 0

⇒ \(\left|\begin{array}{ll}
5 & \mathrm{k} \\
3 & 3
\end{array}\right|\) 0

⇒15 – 3 k ≠ 0

⇒ k ≠ 5

Important Questions For CBSE Class 12 Maths Chapter 4

Question 4. If, for the matrix \(A=\left[\begin{array}{cc}
\alpha & -2 \\
-2 & \alpha
\end{array}\right]\)
,\(\left|\mathrm{A}^2\right|=125\); then the value of α is:

  1. 3
  2. -3
  3. 1
  4. 1

Solution: 1. 3

Determinants Class 12 Important Questions

Given \(\left|A^3\right|=125\)

⇒ \((|A|)^3=125\)

(because \(\left|A^n\right|=|A|^n\))

⇒ \(\left(\alpha^2-4\right)^3=125\)

⇒ \(\left(\alpha^2-4\right)=5\)

⇒ \(\alpha^2=9\) or \(\alpha= \pm 3\)

Question 5. Let matrix X = [xij] is given by X = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]\)
, Then, the matrix Y = [mij]. where mij = Minor of Xij is:

  1. \(\left[\begin{array}{ccc}
    7 & -5 & -3 \\
    19 & 1 & -11 \\
    -11 & 1 & 7
    \end{array}\right]\)
  2. \(\left[\begin{array}{ccc}
    7 & -19 & -11 \\
    5 & -1 & -1 \\
    3 & 11 & 7
    \end{array}\right]\)
  3. \(\left[\begin{array}{ccc}
    7 & 19 & -11 \\
    -3 & 11 & 7 \\
    -5 & -1 & -1
    \end{array}\right]\)
  4. \(\left[\begin{array}{ccc}
    7 & 19 & -11 \\
    -1 & -1 & 1 \\
    -3 & -11 & 7
    \end{array}\right]\)

Solution: 

X = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]\)

Now, Y = [mij]

⇒ Y = \(\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right] \Rightarrow Y=\left[\begin{array}{ccc}
7 & 19 & -11 \\
-1 & -1 & 1 \\
-3 & -11 & 7
\end{array}\right]\)

Determinants Class 12 Important Questions

Question 6. If x =-4 is a root of \(\left|\begin{array}{lll}
x & 2 & 3 \\
1 & x & 1 \\
3 & 2 & x
\end{array}\right|\) = 0
, then the sum of the other two roots is:

  1. 4
  2. -3
  3. 2
  4. 5

Solution: 1. 4

⇒ \(\left|\begin{array}{lll}
x & 2 & 3 \\
1 & x & 1 \\
3 & 2 & x
\end{array}\right|\) = 0 (given)

⇒ \(x\left(x^2-2\right)-2(x-3)+3(2-3 x)=0\)

⇒ \(x^3-2 x-2 x+6+6-9 x=0\)

⇒ \(x^3-13 x+12=0\)

⇒ \((x+4)\left(x^2-4 x+3\right)=0\)

(because x=-4 is a root)

⇒ \((x+4)(x-1)(x-3)=0\)

Hence; the sum of other two roots = 1 + 3 = 4

Determinants Class 12 Important Questions

Question 7. The inverse of the matrix \(X=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]\)

  1. \(24\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right]\)
  2. \(\frac{1}{24}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)
  3. \(\frac{1}{24}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]\)
  4. \(\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right]\)

Solution:

Given, \(X=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]\)

|X| = \(2(12)-0+0=24 \neq 0\)

⇒ \(X^{-1}\) exists

Now, adj X = \(\left[\begin{array}{ccc}12 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 6\end{array}\right]\)

⇒ \(X^{-1}=\frac{1}{|X|} \cdot \mathrm{adj} X\)

⇒ \(X^{-1}=\frac{1}{24}\left[\begin{array}{ccc}
12 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 6
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]\)

Question 8. If A is square matrix of order 3 such that A(adj A) = \(\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]\), then find |A|.

Solution:

Given, A (adj A) = \(\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]\)

We know that A(adj A)= |A| I

Now, A(adj A)= \(-2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] = -2I = |A| I\)

⇒ |A|=-2

Important Question for Class 12 Maths Chapter 4

Question 9. If A is a non-singular square matrix of order 3 such that A² = 3A, then the value of |A| is?

  1. -3
  2. 3
  3. 9
  4. 27

Solution:

Given, A² = 3A, |A| ≠ 0, order of A is 3

∴ |A²| = |3A|

⇒ |A|²= 3³|A|

(|A²| = |A|² and |KA| = Kn|A|)

or |A| = 27

Question 10. If A is a square matrix satisfying A’A = I, write the value of |A|.

Solution:

A’A = I (given)

⇒ \(\left|A^{\prime} A\right|=|I|\)

⇒ \(\left|A^{\prime}\right||A|=|I| \Rightarrow|A|^2=1\) (because \(\left|A^{\prime}\right|=|A|\))

⇒ \(|A|=1 \text { or }|A|=-1\)

Question 11. Given, \(A=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]\), compute A-1 and show that 2A-1 = 9I – A.

Solution:

Given, \(A=\left[\begin{array}{cc}2 & -3 \\ -4 & 7\end{array}\right]\)

|A| = \(14-(12)=2 \neq 0\)

Hence, A is invertible.

adj A = \(\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right]\)

Hence, \(A^{-1}=\frac{1}{|A|} \cdot \mathrm{adj} \cdot(\mathrm{A})\)

⇒ \(\mathrm{A}^{-1}=\frac{1}{2}\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right] \text { or } 2 \mathrm{~A}^{-1}=\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right]\)….(1)

Now, R.H.S. = \(9 \mathrm{I}-\mathrm{A}\)

⇒ \(9\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right]=\left[\begin{array}{cc}
9 & 0 \\
0 & 9
\end{array}\right]-\left[\begin{array}{cc}
2 & -3 \\
-4 & 7
\end{array}\right]=\left[\begin{array}{ll}
7 & 3 \\
4 & 2
\end{array}\right]=2 A^{-1}\)= L.H.S. [from (1)]

Hence proved.

Question 12. If \(A=\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\)
; find A-1.

Important Question for Class 12 Maths Chapter 4

Hence solve the following system of equations: 3x + 4y + 2z = 8; 0x + 2y + 3z = 3 and x + 2y + 6z = -2 or,

OR

If \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\) find \((A B)^{-1} \text {. }\)

Solution:

Given, \(A=\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\)

⇒ |A| = 3(12 -6)-4(0 + 3) + 2(0-2)= 18- 12-4=2*0

Hence, A-1 exists.

Now, co-factors are given as:

C11 = 6, C12 = —3, C13 = -2,

C21=-28, C22 = 16, C23= 10,

C31= -16, C32 = 9, C33 = 6

Hence adj A = \(\left[\begin{array}{ccc}6 & -3 & -2 \\ -28 & 16 & 10 \\ -16 & 9 & 6\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}6 & -28 & -16 \\ -3 & 16 & 9 \\ -2 & 10 & 6\end{array}\right]\)

⇒ \(A^{-1}=\frac{1}{|A|}(\mathrm{adj} A)=\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right]\)….(1)

The system of linear equations is given as:

3x + 4y + 2z = 8

0x + 2y —3 = 3

x – 2y + 6z = -2

This system is written in matrix form as

⇒ \(\left[\begin{array}{ccc}
3 & 4 & 2 \\
0 & 2 & -3 \\
1 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
8 \\
3 \\
-2
\end{array}\right]\)

⇒ AX = B

⇒ X = \(A^{-1} \cdot B\)

⇒ X = \(\frac{1}{2}\left[\begin{array}{ccc}
6 & -28 & -16 \\
-3 & 16 & 9 \\
-2 & 10 & 6
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
3 \\
-2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
48-84+32 \\
-24+48-18 \\
-16+30-12
\end{array}\right]\)

[from (1) and (2)]

⇒ \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
-4 \\
6 \\
2
\end{array}\right]\)

x=-2, y=3, z=1

Or

Given, \(A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]\)…(1)

and \(B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]\)

|B| = 1 (3 – 0) – 2(- 1 – 0) – 2(2 – 0) = 3 + 2 – 4 = 1 ≠ 0

Now, the co-factors of matrix B are given as

⇒ \(C_{11}=3, C_{12}=1, C_{13}=2\)

⇒ \(C_{21}=2, C_{22}=1, C_{23}=2,\)

⇒ \(C_{31}=6, C_{32}=2, C_{33}=5\)

∴ (adj)(B) = \(\left[\begin{array}{lll}
3 & 1 & 2 \\
2 & 1 & 2 \\
6 & 2 & 5
\end{array}\right]^1=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\)

⇒ \(B^{-1}=\frac{1}{|B|}(\mathrm{adj} B)=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\)….(2)

∴ (AB)-1 = B-1 A-1

= \(\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)

=\(\left[\begin{array}{ccc}
9-30+30 & -3+12-12 & 3-10+12 \\
3-15+10 & -1+6-4 & 1-5+4 \\
6-30+25 & -2+12-10 & 2-10+10
\end{array}\right]\)

⇒ \((A B)^{-1}=\left[\begin{array}{ccc}
9 & -3 & 5 \\
-2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]\)

(from (1) and (2))

⇒ \((\mathrm{AB})^{-1}=\left[\begin{array}{ccc}
9 & -3 & 5 \\
-2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]\)

Question 13. If \(A=\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right]\), find A-1 and use it to solve the following system of equations.

5x – y + 4z = 5

2x + 3y + 5z = 2

5x – 2y + 6z = -1

Solution:

Given, \(A=\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right]\)

∴ |A| = \(\left|\begin{array}{ccc}
5 & -1 & 4 \\
2 & 3 & 5 \\
5 & -2 & 6
\end{array}\right|\) = 5(18+10) + (12 – 25) + 4 (-4 – 15)= 140 – 13 – 76 = 51 ≠ 0.

Hence: A-1 exists

Now co-factors of elements of A are:

⇒ \(A_{11}=28, A_{12}=13, A_{13}=-19\)

⇒ \(A_{21}=-2, A_{22}=10, A_{23}=5\)

⇒ \(A_{31}=-17, A_{32}=-17, A_{33}=17\)

∴ adj A = \(\left[\begin{array}{ccc}
28 & 13 & -19 \\
-2 & 10 & 5 \\
-17 & -17 & 17
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
28 & -2 & -17 \\
13 & 10 & -17 \\
-19 & 5 & 17
\end{array}\right]\)

⇒ \(A^{-1}=\frac{1}{|A|}(\mathrm{adj} A)=\frac{1}{51}\left[\begin{array}{ccc}
28 & -2 & -17 \\
13 & 10 & -17 \\
-19 & 5 & 17
\end{array}\right]\)

Given system of equations are

5x – y + 4z = 5

2x + 3y + 5z = 2

5x – 2y + 6z = -1

This system is written in matrix form as

⇒ \({\left[\begin{array}{ccc}
5 & -1 & 4 \\
2 & 3 & 5 \\
5 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
2 \\
-1
\end{array}\right] }\)

⇒ AX = B ⇒ X=\(A^{-1}\) B

⇒ \({\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{51}\left[\begin{array}{ccc}
28 & -2 & -17 \\
13 & 10 & -17 \\
-19 & 5 & 17
\end{array}\right]\left[\begin{array}{r}
5 \\
2 \\
-1
\end{array}\right]}\)

or \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{51}\left[\begin{array}{l}
140-4+17 \\
65+20+17 \\
-95+10-17
\end{array}\right]\)

⇒ \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{51}\left[\begin{array}{r}
153 \\
102 \\
-102
\end{array}\right]=\left[\begin{array}{r}
3 \\
2 \\
-2
\end{array}\right]\)

⇒ x= 3, y = 2, z = -2

Question 14. Show that, for matrix A = \(\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\)
, A³-6 A²+5 A+11 I=O, Hence, find \(A^{-1}\).

Or,

Using the matrix method, solve the following system of equations:

3x – 2y + 3z = 8

2x + y – z = 1

4x – 3y + 2z = 4

Important Question for Class 12 Maths Chapter 4

Solution:

Given A = \(\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\)

To prove: A³ – 6A² + 5A + 11 I = O

⇒ \(A^2=A \cdot A=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1+1+2 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right]\)

⇒ \(A^2=\left[\begin{array}{rrr}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]\)

and \(A^3= A^2 \cdot A=\left[\begin{array}{rrr}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\)

–\(\left[\begin{array}{rrr}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right]\)

⇒ \(A³=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]\)

L.H.S. = \(A^3-6 A^2+5 A+11I\)

= \(\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-6\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+11\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)

= \(\left[\begin{array}{ccc}
8-24+5+11 & 7-12+5+0 & 1-6+5+0 \\
-23+18+5+0 & 27-48+10+11 & -69+84-15+0 \\
32-42+10+0 & -13+18-5+0 & 58-84+15+11
\end{array}\right]\)

= \(\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\mathrm{O}\) Zero matrix

Now, A³-6A²+5A+11 I = O

A³A-1 – 6A²A -1+ 5AA-1 + 11 I A-1 = OA-1 (Post multiplying both sides by \(A^{-1}\)

A²(AA-1)-6A(AA-1)+5(AA-1)+11 I A-1 = OA-1

A²-6A +5I + 11A-1 = O

because AA-1=I and OA-1 =O

⇒ \(A^{-1}=\frac{-1}{11} \cdot\left(A^2-6 A+5I\right)=\frac{-1}{11}\left\{\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]-6\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}\)

⇒ \(A^{-1}=\frac{-1}{11}\left[\begin{array}{ccc}
4-6+5 & 2-6+0 & 1-6+0 \\
-3-6+0 & 8-12+5 & -14+18+0 \\
7-12+0 & -3+6+0 & 14-18+5
\end{array}\right]\)

⇒ \(A^{-1}=\left[\begin{array}{ccc}
-3 / 11 & 4 / 11 & 5 / 11 \\
9 / 11 & -1 / 11 & -4 / 11 \\
5 / 11 & -3 / 11 & -1 / 11
\end{array}\right]\)

The given system of equations are:

3x -2y + 3 z = 8

2x + y – z = 1 and

4x – 3y + 2z = 4

Important Question for Class 12 Maths Chapter 4

By using the matrix method; the given system of equations can be written as; AX = B

where \(A=\left[\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\) and \(B=\left[\begin{array}{l}8 \\ 1 \\ 4\end{array}\right]\)

Now; \(|A|=\left|\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right|\)=-3+16-30=-17 ≠0

Hence; \(\mathrm{A}^{-1}\) exists.

Now; \(A=\left[\begin{array}{ccc}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right]\)

Co-factors are given as: \(C_{11}=-1, \quad C_{12}=-8, C_{13}=-10, C_{21}=-5, C_{22}=-6, C_{23}=1, C_{31}=-1, C_{32}=9, C_{33}=7\)

Hence, (adj)(A)= \(\left[C_{i j}\right]^{\mathrm{T}}\)

adj(A)= \(\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right]\)

Now; AX = \(B \Rightarrow X=A^{-1} \cdot B\) = \(\frac{\mathrm{adj} A}{|A|} \cdot B\)

⇒ \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=-\frac{1}{17}\left[\begin{array}{ccc}
-1 & -5 & -1 \\
-8 & -6 & 9 \\
-10 & 1 & 7
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
1 \\
4
\end{array}\right]=-\frac{1}{17}\left[\begin{array}{c}
-8-5-4 \\
-64-6+36 \\
-80+1+28
\end{array}\right]=-\frac{1}{17}\left[\begin{array}{l}
-17 \\
-34 \\
-51
\end{array}\right]\)

⇒ \(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\)

x=1, y=2, z=3

Question 15. If \(A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\)
, find A-1. Hence, using A-1, solve the system of equations:

2x – 3y + 5z = 11,

3x + 2y – 4z = -5,

x + y -2z = -3.

Solution:

Given, \(A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\)

A is invertible if |A| ≠ 0

Now. |A| = 2(-4 + 4) + 3 (-6 + 4) + 5(3 – 2)= 0 – 6 + 5 =-1≠0

Co-factors are given as :

⇒ \(C_{11}=0, C_{12}=2, C_{13}=1\)

⇒ \(C_{21}=-1, C_{22}=-9, C_{23}=-5\)

⇒ \(C_{31}=2, C_{32}=23, C_{33}=13\)

⇒ (adj) \((\mathrm{A})=\left[\mathrm{C}_{1 \mathrm{ij}}\right]^{\mathrm{T}}\)

or (adj) \((\mathrm{A})=\left[\begin{array}{ccc}
0 & 2 & 1 \\
-1 & -9 & -5 \\
2 & 23 & 13
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right]\)

⇒ \(\mathrm{A}^{-1}=\frac{\mathrm{adj}(\mathrm{A})}{|\mathrm{A}|}=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\)

Now, given equations are 2x-3y + 5z = 11; 3x + 2y -4z = -5 and x + y – 2z = -3

⇒ \({\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]}\)

⇒ \(\mathrm{AX}=\mathrm{B} \text { or } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \\
\Rightarrow \mathrm{X}=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]\)

or \(\mathrm{X}=\left[\begin{array}{c}
0 \times 11+(1) \times(-5)+(-2) \times(-3) \\
(-2) \times 11+9 \times(-5)+(-23) \times(-3) \\
(-1) \times 11+5 \times(-5)+(-13) \times(-3)
\end{array}\right] \\
\Rightarrow \quad\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\)

⇒ \(\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3\)

Leave a Comment