CBSE Class 12 Maths Chapter 2 Important Questions: Key Concepts and Solutions
Overview of Chapter 2
Chapter 2 of CBSE Class 12 Maths focuses on Inverse Trigonometric Functions. Understanding these functions is crucial for solving various mathematical problems effectively.
CBSE Class 12 Maths Chapter 2 Inverse Trigonometric Functions Important Questions
Question 1. The principal value of \(\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)\) is
- \(\frac{\pi}{12}\)
- \(\pi\)
- \(\frac{\pi}{3}\)
- \(\frac{\pi}{6}\)
Solution: 1. \(\frac{\pi}{12}\)
⇒ \(\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=\frac{\pi}{3}+\left(-\frac{\pi}{4}\right)\)
= \(\frac{4 \pi-3 \pi}{12}=\frac{\pi}{12}\)
Read and Learn More CBSE Class 12 Maths Important Question and Answers
Question 2. The principal value of \(\tan ^{-1}\left(\tan \frac{9 \pi}{8}\right)\) is:
- \(\frac{\pi}{8}\)
- \(\frac{3 \pi}{8}\)
- \(-\frac{\pi}{8}\)
- \(-\frac{3 \pi}{8}\)
Solution: 1. \(\frac{\pi}{8}\)
⇒ \(\tan ^{-1}\left[\tan \left(\frac{9 \pi}{8}\right)\right]=\tan ^{-1}\left[\tan \left(\pi+\frac{\pi}{8}\right)\right]\)
= \(\tan ^{-1}\left[\tan \left(\frac{\pi}{8}\right)\right]=\frac{\pi}{8} \in\left(-\frac{\pi}{2} \cdot \frac{\pi}{2}\right)\)
CBSE Important Questions for Class 12 Maths
Question 3. What is the domain of the function cos-1(2x-3)?
- [-1, 1]
- (1,2)
- (-1, 1)
- [1,2]
Solution: 4. [1,2]
For the given function: -1 ≤ 2x – 3 ≤ 1
⇒ 2 ⇒ 2x ⇒ 4
⇒ 1 ≤ x ≤ 2
Question 4. The principal value of [tan-1 √3 – cot-1 (-√3)] is
- π
- \(-\frac{\pi}{2}\)
- 0
- \(2 \sqrt{3}\)
Solution: 2. \(-\frac{\pi}{2}\)
⇒ \(\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})=\frac{\pi}{3}-\left(\pi-\cot ^{-1}(\sqrt{3})\right)\)
=\(\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right)=\frac{\pi}{3}-\frac{5 \pi}{6}=\frac{-3 \pi}{6}=\frac{-\pi}{2}\)
Question 5. The range or the principal valurbrance of the function y = sec-1 x is ____
or,
The principal value of \(\cos ^{-1}\left(-\frac{1}{2}\right)\) is
Solution:
y = \(\sec ^{-1} x\) (given)
Range of \(\sec ^{-1} x\) is [0, π]-{π/2}
Or
Let \(\cos ^{-1}\left(-\frac{1}{2}\right)=y\)
⇒ \(\cos y=-\frac{1}{2} \Rightarrow \cos y=\cos \left[\pi-\frac{\pi}{3}\right]\)
⇒ \(\cos y=\cos \frac{2 \pi}{3} \Rightarrow y=\frac{2 \pi}{3} \in[0, \pi]\)
CBSE Important Questions for Class 12 Maths
Question 6. Simplify \(\sec ^{-1}\left(\frac{1}{2 x^2-1}\right), 0<x<\frac{1}{\sqrt{2}} \text {. }\)
Solution:
Let y = \(\sec ^{-1}\left(\frac{1}{2 x^2-1}\right), 0<x<\frac{1}{\sqrt{2}}\)
Put x = \(\cos \theta\); then \(\theta=\cos ^{-1} x\)
y = \(\sec ^{-1}\left(\frac{1}{2 \cos ^2 \theta-1}\right)\)
= \(\sec ^{-1}\left(\frac{1}{\cos 2 \theta}\right)=\sec ^{-1}(\sec 2 \theta)=2 \theta=2 \cos ^{-1} x\)
Question 7. Prove that: \(3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^3\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]\)
Solution:
To prove: \(3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^3\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]\)
R.H.S = sin-1(3x – 4x³)
Put x = sinθ : θ = sin-1x
⇒ R.H.S = sin-1 (3sinθ – 4sin³θ) – sin-1(sin3θ) = 3θ = 3sin-1x = L.H.S
Hence, proved.
CBSE Class 12 Maths Chapter 2 Conclusion
Focusing on these important questions will enhance your preparation for CBSE Class 12 Maths Chapter 2. Regular practice will build confidence and improve your problem-solving skills.