CBSE Class 12 Maths Chapter 3 Matrices Important Questions
Question 1. The number of all possible matrices of order 2 x 3 with each country 1 or 2 is :
- 16
- 6
- 64
- 24
Solution: 3. 6
Required number of possible matrices
= (Number of entries)order
= (2)2×3 = (2)6 = 64
Read and Learn More CBSE Class 12 Maths Important Question and Answers
Important Questions For Class 12 Maths Matrices
Question 2. If a matrix A is both symmetric and skewed, symmetric. then A is necessarily a
- Diagonal matrix
- Zero square matrix
- Square matrix
- Identity matrix
Solution: 2. Zero square matrix
Given; AT = A (symmetric matrix)
and -AT= A (skew-symmetric matrix)
⇒ 2A = O or A = O
Hence, A is necessarily a zero-square matrix
Question 3. If \(\left[\begin{array}{cc}
3 c+6 & a-d \\
a+d & 2-3 b
\end{array}\right]=\left[\begin{array}{cc}
12 & 2 \\
-8 & -4
\end{array}\right]\), then the value of ab-cd is
- 4
- 16
- -4
- -16
Solution: 1. 4
Given: \(\left[\begin{array}{cc}
3 c+6 & a-d \\
a+d & 2-3 b
\end{array}\right]=\left[\begin{array}{cc}
12 & 2 \\
-8 & -4
\end{array}\right]\)
On comparing both sides, we get
a – d = 2 and a + d = -8
⇒ 2a = -6 Or a=-3
⇒ d = -5
Also; 3c + 6 = 12, 2-3b = -4
⇒ c = 2, b = 2
Hence, ab- cd = (-3)2 – 2(-5) = -6 + 10 = 4
Question 4. For two matrices \(P=\left[\begin{array}{cc}
3 & 4 \\
-1 & 2 \\
0 & 1
\end{array}\right] \text { and } Q^{\top}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]\), P-Q is
- \(\left[\begin{array}{cc}2 & 3 \\ -3 & 0 \\ 0 & -3\end{array}\right]\)
- \(\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]\)
- \(\left[\begin{array}{cc}4 & 3 \\ 0 & -3 \\ -1 & -2\end{array}\right]\)
- \(\left[\begin{array}{cc}2 & 3 \\ 0 & -3 \\ 0 & -3\end{array}\right]\)
Solution: 2. \(\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]\)
⇒ \(Q^{\top}=\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right] \Rightarrow Q=\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]\)
Hence, \(P-Q=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right]\)
Matrix Multiplication Problems Class 12 Maths
Question 5. A matrix A = [aij]3×3 is defined by \(a_{i j}=\left\{\begin{array}{ccc}
2 i+3 j & ; & i<j \\
5 & ; & i=j \\
3 i-2 j & ; & i>j
\end{array}\right.\), The number of elements in A, which are more than 5, is
- 3
- 4
- 5
- 6
Solution: 2. 4
Given; A = [aij]3×3
where \(a_{i j}=\left\{\begin{array}{ccc}
2 i+3 j & ; & i<j \\
5 & ; & i=j \\
3 i-2 j & ; & i>j
\end{array}\right.\)
⇒ A= \(\left[\begin{array}{lll}
5 & 8 & 11 \\
4 & 5 & 13 \\
7 & 5 & 5
\end{array}\right]\)
Hence; required number =4
Question 6. For the matrix X = \(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\), (X²-X) is:
- 21
- 31
- 1
- 51
Solution: 1. 21
⇒ \(X^2=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\)
⇒ \(X^2-X=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]-\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=21\)
Question 7. Find the order of matrix A such that \(\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]\), A = \(\left[\begin{array}{cc}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right]\)
or,
If B = \(\left[\begin{array}{cc}
1 & -5 \\
0 & -3
\end{array}\right]\) and A+2 B = \(\left[\begin{array}{cc}
0 & 4 \\
-7 & 5
\end{array}\right]\), find matrix A.
Solution:
Let \(\mathrm{B}=\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]\) and \(\mathrm{C}=\left[\begin{array}{cc}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right]\)
We have \(\left[\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right]_{3 \times 2} \quad A=\left[\begin{array}{cc}-1 & -8 \\ 1 & -2 \\ 9 & 22\end{array}\right]_{3 \times 2}\)
Let the order of A be m x n
BA will be possible if several columns in matrix B should be equal to several rows in matrix A ⇒ m = 2.
and the order of BA is 3 x n
Since, BA = C.
⇒ Order of BA will be the same as that of matrix C
⇒ 3 x n = 3 x 2
⇒ n = 2
Then, the order of matrix A is 2 x 2
A+2 B \(\left[\begin{array}{cc}
0 & 4 \\
-7 & 5
\end{array}\right]\) (given)
⇒ A = \(\left[\begin{array}{cc}
0 & 4 \\
-7 & 5
\end{array}\right]-2 B=\left[\begin{array}{cc}
0 & 4 \\
-7 & 5
\end{array}\right]-2\left[\begin{array}{cc}
1 & -5 \\
0 & -3
\end{array}\right]=\left[\begin{array}{cc}
0 & 4 \\
-7 & 5
\end{array}\right]-\left[\begin{array}{cc}
2 & -10 \\
0 & -6
\end{array}\right]\)
⇒ A = \(\left[\begin{array}{cc}
-2 & 14 \\
-7 & 11
\end{array}\right]\)
Question 8. If A = \(\left[\begin{array}{lll}
1 & 0 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]\), find AB.
Solution:
AB= \(\left[\begin{array}{lll}
1 & 0 & 4
\end{array}\right]_{1 \times 3}\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]_{3 \times 1}\)
= \([1 \times 2+0 \times 5+4 \times 6]_{1 \times 1}=[2+0+24]=[26]\)
Class 12 Matrices Chapter Important Board Questions
Question 9. Given, a skew-symmetric matrix \(A = \mathrm{A}=\left[\begin{array}{ccc}
0 & \mathrm{a} & 1 \\
-1 & \mathrm{~b} & 1 \\
-1 & \mathrm{c} & 0
\end{array}\right]\), then value of (a+b+c)² is
Solution:
Given \(A = \mathrm{A}=\left[\begin{array}{ccc}
0 & \mathrm{a} & 1 \\
-1 & \mathrm{~b} & 1 \\
-1 & \mathrm{c} & 0
\end{array}\right]\)
A is a skew-symmetric matrix, AT = -A
⇒ \(A^{\top}=\left[\begin{array}{ccc}
0 & -1 & -1 \\
a & b & c \\
1 & 1 & 0
\end{array}\right] \text { and }-A=\left[\begin{array}{ccc}
0 & -a & -1 \\
1 & -b & -1 \\
1 & -c & 0
\end{array}\right]\)
So, a = 1, b = 0 and c = -1
Now (a + b + c)² = (1 +0-1)² = 0
Question 10. If the matrices A = \(\left[\begin{array}{ccc}
0 & \mathrm{a} & -3 \\
2 & 0 & -\mathrm{t} \\
\mathrm{b} & 1 & 0
\end{array}\right]\) is skew symmetric, find the values of ‘a’ and ‘b’.
Solution:
A = \(\left[\begin{array}{ccc}
0 & \mathrm{a} & -3 \\
2 & 0 & -\mathrm{t} \\
\mathrm{b} & 1 & 0
\end{array}\right]\) (given)
A is skew-symmetric ⇒ AT = -A
⇒ \(\left[\begin{array}{ccc}
0 & 2 & b \\
a & 0 & 1 \\
-3 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -a & 3 \\
-2 & 0 & 1 \\
-b & -1 & 0
\end{array}\right]\)
⇒ a=-2, b=3
Question 11. If the matrix A = \(\left[\begin{array}{cc}
0 & 6-5 x \\
x^2 & x+3
\end{array}\right]\) is symmetric, find the values of x?
Solution:
A = \(\left[\begin{array}{cc}
0 & 6-5 x \\
x^2 & x+3
\end{array}\right]\) (given)
For a symmetric matrix, A = A1
⇒ \(\left[\begin{array}{cc}
0 & 6-5 x \\
x^2 & x+3
\end{array}\right]=\left[\begin{array}{cc}
0 & x^2 \\
6-5 x & x+3
\end{array}\right]\)….(1)
∴ 6-5x = x² [from (1)]
⇒ x² + 5x – 6 = 0
⇒ (x + 6) (x -1) = 0
⇒ x = – 6, 1
Question 12. If A = \(\left[\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\), find scalar k such that A² + I = KA
Solution:
Given, A = \(\left[\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right] \text { and } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
⇒ \(\left[\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=K\left[\begin{array}{cc}
-3 & 2 \\
1 & -1
\end{array}\right]\)
(because \(A^2+I=K A\))
⇒ \(\left[\begin{array}{cc}
11 & -8 \\
-4 & 3
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\) = \(\left[\begin{array}{cc}
-3 \mathrm{~K} & 2 \mathrm{~K} \\
\mathrm{~K} & -\mathrm{K}
\end{array}\right]\)
∴ \(\left[\begin{array}{cc}
12 & -8 \\
-4 & 4
\end{array}\right]\) = \(\left[\begin{array}{cc}
-3 \mathrm{~K} & 2 \mathrm{~K} \\
\mathrm{~K} & -\mathrm{K}
\end{array}\right]\)
⇒ K = -4 (on comparing both sides)
Application Of Matrices Class 12 Maths Questions
Question 13. If A = \(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]\) , show that (A-2I)(A-3I) = O.
Solution:
A = \(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]\) (given)
⇒ A-2I = \(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-1 & -1
\end{array}\right]\)
and A-3I = \(\left[\begin{array}{cc}
4 & 2 \\
-1 & 1
\end{array}\right]-3\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-1 & -2
\end{array}\right]\)
⇒ (A-2I)(A-3I) = \(\left[\begin{array}{cc}
2 & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & -2
\end{array}\right]=\left[\begin{array}{cc}
2-2 & 4-4 \\
-1+1 & -2+2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=O\)