Multiplication Of Vectors
1. The Scalar Product:
The scalar product or dot product of any two vectors \(\vec{A} \text { and } \vec{B}\), denoted as \(\vec{A} \cdot \vec{B}\)(read \(\vec{A}\).\(\vec{B}\)) is defined as the product of their magnitude with cosine of angle between them. Thus, \(\overrightarrow{\mathrm{A}}\). \(\vec{B}\) = AB cos θ {here θ is the angle between the vectors}
The Scalar Product Properties:
It is always a scalar which is positive if the angle between the vectors is acute (i.e. < 90º) and negative if the angle between them is obtuse (i.e. 90º < θ ≤ 180º)
It is commutative, i.e., \(\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{B}\)
It is distributive, i.e., \(\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}\)
As by definition \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}\)= AB cos θ.
The angle between the vectors θ = \(\cos ^{-1}\left[\frac{\vec{A} \cdot \vec{B}}{A B}\right]\)
⇒ \(\vec{A}.\vec{B}\) = A (B cos θ) = B (A cos θ)
Geometrically, B cos θ is the projection of \(\vec{B} \text { onto } \vec{A}\), and A cos θ is the projection of \(\vec{A} \text { onto } \vec{B}\) shown. So \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}\) is the product of the magnitude of \(\overrightarrow{\mathrm{A}}\) and the component of \(\overrightarrow{\mathrm{B}}\) along \(\overrightarrow{\mathrm{A}}\) and vice versa.
Component of \(\vec{B} \text { along } \overrightarrow{\mathrm{A}}\) = B cosθ = \(\frac{\vec{A} \cdot \vec{B}}{A}=\vec{A} \cdot \vec{B}\)
Component of \(\vec{A} \text { along } \overrightarrow{\mathrm{B}}\) along = \(\frac{\vec{A} \cdot \vec{B}}{B}=\vec{A} \cdot \vec{B}\)
Scalar product of two vectors will be maximum when cos θ = max = 1, i.e., θ = 0º, i.e., vectors are parallel
⇒ \((\vec{A} \cdot \vec{B})_{\max }=A B\)
If the scalar product of two nonzero vectors vanishes then the vectors are perpendicular. The scalar product of a vector by itself is termed as self dot product and is given by
⇒ \((\vec{A})^2=\vec{A} \cdot \vec{A}=A A \cos \theta=A A \cos 0^{\circ}=A^2\)
⇒ \(A=\sqrt{\vec{A} \cdot \vec{A}}\)
In case of unit vector \(\hat{n}\)
⇒ \(\hat{n} . \hat{n}=1 \times 1 \times \cos 0^{\circ}=1\)
⇒ \(\hat{n} \cdot \hat{n}=\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1\)
In case of orthogonal unit vectors \(\hat{\mathrm{i}}, \hat{\mathrm{j}} \text { and } \hat{\mathrm{k}}\); \(\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0\)
⇒ \(\vec{A} \cdot=\left(\hat{i} A_x+\hat{j} A_y+\hat{k} A_z\right) \cdot\left(\hat{i} B_x+\hat{j} B_y+\hat{k} B_z\right)\)
⇒ \(\left[A_x B_x+A_y B_y+A_z B_z\right]\)
Question 1. If the Vectors \(\vec{P}=a \hat{i}+a \hat{j}+3 \hat{k} \text { and } \vec{Q}=a \hat{i}-2 \hat{j}-\hat{k}\) are perpendicular to each other. Find the value of a?
Answer:
If vectors \(\vec{P} \text { and } \vec{Q}\) are perpendicular
⇒ \(\vec{P} \cdot \vec{Q}=0\)
⇒ \((a \hat{i}+a \hat{j}+3 \hat{k}) \cdot(a \hat{i}-2 \hat{j}-\hat{k})=0\)
⇒ \(a^2-2 a-3=0\)
⇒ \(a^2-3 a+a-3=0\)
⇒ a(a-3)+1(a-3) = 0
⇒ (a + 1)(a – 3) = 0
⇒ a + 1 = 0 or a – 3 = 0
⇒ a = -1 or a = 3
⇒ a = -1,3
Question 2. Find the component of \(3 \hat{i}+4 \hat{j} \text { along } \hat{i}+\hat{j}\)?
Answer:
Component of \(\overrightarrow{\mathrm{A}}\)along \(\overrightarrow{\mathrm{B}}\) is given by \(\frac{\vec{A} \cdot \vec{B}}{B}\) hence required component
⇒ \(\frac{(3 \hat{i}+4 \hat{j}) \cdot(\hat{i}+\hat{j})}{\sqrt{2}}\)
⇒ \(\frac{7}{\sqrt{2}}\)
Question 3. Find angle between \(\vec{A}=3 \hat{i}+4 \hat{j} \text { and } \vec{B}=12 \hat{i}+5 \hat{j}\)
Answer:
We have cos θ = \(\frac{\vec{A} \cdot \vec{B}}{A B}\)
⇒ \(\frac{(3 \hat{i}+4 \hat{j}) \cdot(12 \hat{i}+5 \hat{j})}{\sqrt{3^2+4^2} \sqrt{12^2+5^2}}\)
⇒ \(\cos \theta=\frac{36+20}{5 \times 13}=\frac{56}{65}\)
⇒ \(\theta=\cos ^{-1} \frac{56}{65}\)
2. Vector Product
The vector product or cross product of any two vectors \(\overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\) A and B, denoted as \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}(\text { read } \overrightarrow{\mathrm{A}} \text { cross } \overrightarrow{\mathrm{B}})\) is defined as:
⇒ \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\mathrm{AB} \sin \theta \hat{n}\)
Here θ is the angle between the vectors and the direction \(\hat{n}\) is given by the right-hand-thumb rule.
Right-Hand-Thumb Rule:
To find the direction of \(\hat{n}\) draw the two vectors \(\overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\) with both the tails coinciding.
Now place your stretched right palm perpendicular to the plane of \(\overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\) in such a way that the fingers are along the vector \(\overrightarrow{\mathrm{A}}\) and when the fingers are closed they go towards \(\overrightarrow{\mathrm{B}}\). The direction of the thumb gives the direction of \(\hat{n}\)
Vector Product Properties
The vector product of two vectors is always a vector perpendicular to the plane containing the two vectors i.e. orthogonal to both vectors.
A and B, though the vectors \(\vec{A} \text { and } \vec{B}\) though the vector \(\vec{A} \text { and } \vec{B}\) may or may not be orthogonal.
Vector product of two vectors is not commutative i.e. \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} \neq \overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{A}}\)
But \(|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=|\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{A}}|\) = AB sin θ
The vector product is distributive when the order of the vectors is strictly maintained i.e.
⇒ \(\mathrm{A} \times(\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}})=\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{C}}\)
The magnitude of the vector product of two vectors will be maximum when sinθ = max = 1, i.e, θ = 90º
⇒ \(|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|_{\max }=\mathrm{AB}\) i.e., the magnitude of the vector product is maximum if the vectors are orthogonal.
The magnitude of the vector product of two non–zero vectors will be minimum when |sinθ| = minimum = 0,i.e., θ = 0º or 180º, and vectors are collinear.
min | A B | 0 × =i.e., if the vector product of two non–zero vectors vanishes, the vectors are collinear.
Note: When θ = 0º then vectors may be called like vectors or parallel vectors and when θ = 180º then vectors may be called unlike vectors or antiparallel vectors.
The self-cross product i.e. product of a vector by itself vanishes i.e. is a null vector.
Note: Null vector or zero vector: A vector of zero magnitude is called a zero vector. The direction of a zero vector is determinate (unspecified).
⇒ \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=\mathrm{AA} \sin 0^{\circ} \hat{\mathrm{n}}=\overrightarrow{0}\)
Note: Geometrical meaning of vector product of two vectors
- Consider two vectors \(\overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\) which are represented by \(\overrightarrow{\mathrm{OP}} \text { and } \overrightarrow{\mathrm{QP}} \text { and } \angle \mathrm{POQ}=\theta\)
- Complete the parallelogram OPRQ. Join P with Q. Here OP = A and OQ = B. Draw QN ⊥OP
- Magnitude of the cross product of \(\vec{A} \text { and } \vec{B}\)
⇒ \(|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|=\mathrm{AB} \sin \theta\)
= (OP)(OQ sin θ)
= (OP)(NQ) (∵ NQ = OQ sin θ)
= base × height
= Area of parallelogram OPRQ
Area of ΔPOQ = ΔPOQ = \(\frac{\text { base } \times \text { height }}{2}=\frac{(\mathrm{OP})(\mathrm{NQ})}{2}\)
⇒ \(\frac{1}{2}|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|\)
∴ Area of parallelogram OPRQ = 2 [area of Δ OPQ] = \(|\vec{A} \times \vec{B}|\)
Formulae to find Area
If \(\vec{A} \text { and } \vec{B}\) are two adjacent sides of a triangle, then its area = \(\frac{1}{2}|\vec{A} \times \vec{B}|\)
If \(\vec{A} \text { and } \vec{B}\) are two adjacent sides of a parallelogram, then its area = \(|\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|\)
If \(\vec{A} \text { and } \vec{B}\) are diagonals of a parallelogram then its area = \(\frac{1}{2}|\vec{A} \times \vec{B}|\)
In case of unit vector \(\hat{n}, \quad \hat{n} \times \hat{n}=\overrightarrow{0} \Rightarrow \hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=\overrightarrow{0}\)
In case of orthogonal unit vectors \(\hat{i}, \hat{j} \text { and } \hat{k}\) in accordance with right-hand-thumb-rule,
In terms of compound, \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}\)
⇒ \(\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_x & A_y & A_z \\
B_x & B_y & B_z
\end{array}\right|=\hat{i}\left|\begin{array}{cc}
A_y & A_z \\
B_y & B_z
\end{array}\right|-\hat{j}\left|\begin{array}{cc}
A_x & A_z \\
B_x & B_z
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
A_x & A_y \\
B_x & B_y
\end{array}\right|\)
The magnitude of the area of the parallelogram formed by the adjacent sides of vectors \(\vec{A} \text { and } \vec{B}\) equal to
Question 4. \(\overrightarrow{\mathrm{A}}\) is Eastwards and \(\overrightarrow{\mathrm{B}}\) is downwards. Find the direction of \(\overrightarrow{\mathrm{A}} \times \vec{B}\)?
Answer:
Applying the right-hand thumb rule we find that \(\overrightarrow{\mathrm{A}} \times \vec{B}\) is along North.
Question 5. If \(\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|\), find angle between \(\overrightarrow{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}\)
Answer:
⇒ \(\vec{A} \cdot \vec{B}=|\vec{A} \times \vec{B}|\)
AB cos θ = AB sin θ
tan θ = 1
⇒ θ = 45º
Question 6. Two vectors \(\vec{A} \text { and } \vec{B}\) are inclined to each other at an angle θ. Find a unit vector that is perpendicular to both \(\vec{A} \text { and } \vec{B}\)
Answer:
⇒ \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\mathrm{AB} \sin \theta \hat{n}\)
⇒ \(\hat{n}=\frac{\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}}{\mathrm{AB} \sin \theta}\) here \(\hat{n}\) is perpendicular to both \(\vec{A} \text { and } \vec{B}\)
Question 7. Find \(\vec{A} \times \vec{B}\) if \(\vec{A}=\hat{i}-2 \hat{j}+4 \hat{k}\) and \(\vec{B}=2 \hat{i}-\hat{j}+2 \hat{k}\)
Answer:
⇒ \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}\)
⇒ \(\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 4 \\
3 & -1 & 2
\end{array}\right|\)
⇒ \(\hat{i}(-4-\hat{j}(-4))-(2-12)+\hat{k}(-1-(-6))=10 \hat{j}+5 \hat{k}\)
Question 8. Find the value of
- sin (− θ)
- cos (− θ)
- tan (− θ)
- cos (\(\frac{\pi}{2}\)− θ)
- sin (\(\frac{\pi}{2}\)+ θ)
- cos (\(\frac{\pi}{2}\)+ θ) 2
- sin (π − θ)
- cos (π − θ)
- sin (\(\frac{3 \pi}{2}\)− θ)
- cos (\(\frac{3 \pi}{2}\)− θ)
- sin (\(\frac{3 \pi}{2}\)+ θ)
- cos (\(\frac{3 \pi}{2}\)+ θ)
- tan (\(\frac{\pi}{2}\)− θ)
- cot (\(\frac{\pi}{2}\)− θ) 2
Answers :
- – sin θ
- cos θ
- – tan θ
- sin θ
- cos θ
- – sin θ
- sin θ
- – cos θ
- – cos θ
- – sin θ
- – cos θ
- sin θ
- cot θ
- tan θ
Question 9.
- For what value of m the vector \(\vec{A}=2 \hat{i}+3 \hat{j}-6 \hat{k}\) is perpendicular to \(\vec{B}=3 \hat{i}-m \hat{j}+6 \hat{k}\)
- Find the components of vector \(\vec{A}=2 \hat{i}+3 \hat{j}\) along the direction of \(\hat{i}+\hat{j}\)?
Answers :
- m = –10
- \(\frac{5}{\sqrt{2}}\)
Question 10.
- \(\overrightarrow{\mathrm{A}}\) is North–East and \(\overrightarrow{\mathrm{B}}\) is downwards, find the direction of \(\vec{A} \times \vec{B}\)
- Find \(\vec{B} \times \vec{A} \text { if } \vec{A}=3 \hat{i}-2 \hat{j}+6 \hat{k}\) and \(\vec{B}=\hat{i}-\hat{j}+\hat{k}\)
Answers :
- North-West.
- \(-4 \hat{i}-3 \hat{j}+\hat{k}\)