Differential Calculus
Differential Calculus Exercise 1 Multiple Choice Questions
Question 1. If y = 2x,then \(\frac{d y}{d x}\)= ?
- \(x\left(2^{x-1}\right)\)
- \(\frac{2^x}{(\log 2)}\)
- \(2^x(\log 2)\)
- None of these
Answer: 3. \(2^x(\log 2)\)
⇒ \(\frac{d y}{d x}=2^x(\log 2)\)
Question 2. If y = \(\log _{10} x, \text { then } \frac{d y}{d x}=?\)
- \(\frac{1}{x}\)
- \(\frac{1}{x}\)(log 10)
- \(\frac{1}{x(\log 10)}\)
- None of these
Answer: 3. \(\frac{1}{x(\log 10)}\)
⇒ \(y=\frac{\log x}{\log 10}\)
Read and Learn More WBCHSE Solutions For Class 12 Maths
Question 3. \(\text { If } y=e^{1 / x} \text {, then } \frac{d y}{d x}=?\)
- \(\frac{1}{x} \cdot e^{(1 / x-1)}\)
- \(\frac{-e^{1 / x}}{x^2}\)
- \(e^{1 / x} \log x\)
- None of these
Answer: 2. \(\frac{-e^{1 / x}}{x^2}\)
⇒ \(\frac{d y}{d x}=\frac{e^{1 / x}}{-x^2}\)
Question 4. \(\text { If } y=x^x \text {, then } \frac{d y}{d x}=?\)
- xx log x*
- xx (1+log x)
- x (1+log x)
- None of these
Answer: 2. xx (1+log x)
log y= xx log x. Now differentiate w.r.t. x.
Question 5. \(\text { If } y=x^{\sin x}, \text { then } \frac{d y}{d x}=?\)
- \((\sin x) \cdot x^{(\sin x-1)}\)
- \((\sin x \cos x) \cdot x^{(\sin x-1)}\)
- \(x^{\sin x}\left\{\frac{\sin x+x \log x \cdot \cos x}{x}\right\}\)
- None of these
Answer: 3. \(x^{\sin x}\left\{\frac{\sin x+x \log x \cdot \cos x}{x}\right\}\)
logy= sin x(logx)
Question 6. \(\text { If } y=x^{\sqrt{x}} \text {, then } \frac{d y}{d x}=?\)
- \(\sqrt{ } x \cdot x^{(\sqrt{ } x-1)}\)
- \(\frac{x^{\sqrt{x}} \log x}{2 \sqrt{x}}\)
- \(x^{\sqrt{x}}\left\{\frac{2+\log x}{2 \sqrt{ } x}\right\}\)
- None of these
Answer: 3. \(x^{\sqrt{x}}\left\{\frac{2+\log x}{2 \sqrt{ } x}\right\}\)
log y= \(\sqrt{ } x(\log x)\)
Question 7. \(\text { If } y=e^{\sin \sqrt{x}} \text {, then } \frac{d y}{d x}=?\)
- \(e^{\sin \sqrt{ } x} \cdot \cos \sqrt{x}\)
- \(\frac{e^{\sin \sqrt{x}} \cos \sqrt{x}}{2 \sqrt{x}}\)
- \(\)
- None of these
Answer: 2. \(\frac{e^{\sin \sqrt{x}} \cos \sqrt{x}}{2 \sqrt{x}}\)
log y= sin \(\sqrt{ } x\)
Question 8. If y (tanx)cot x, then \(\frac{d y}{d x}\)=?
- cot x. (tan x)cot x-1.sec2x
- -(tan x)cot x . cosec2x
- (tan x)cot x. cosec2x(l- log tan x)
- None of these
Answer: 3. (tan x)cot x. cosec2x(l- log tan x)
log y= cot x .log (tan x)
Question 9. If y= (sin x)logx, then\(\frac{d y}{d x}\) =?
- (logx). (sinx)(logx-1). cos x
- (sin x)logx . \(\left\{\frac{x \log x+\log \sin x}{x}\right\}\)
- (sin x)logx . \(\left\{\frac{(x \log x) \cot x+\log \sin x}{x}\right\}\)
- None of these
Answer: 3. (sin x)logx . \(\left\{\frac{(x \log x) \cot x+\log \sin x}{x}\right\}\)
log y= (log x). (log sin x)
Question 10. If y = sin(xx),then \(\frac{d y}{d x}\) = ?
- xxcos (xx)
- xx cos xx (1+logx)
- xxcos xxlog x
- None of these
Answer: 2. xx cos xx (1+logx)
Let xx = z. Then, y= sin z. Then, \(\frac{d y}{d x}=\left(\frac{d y}{d z} \times \frac{d z}{d x}\right)\)
Question 11. If y= \(\sqrt{x \sin x}\) then \(\frac{d y}{d x}\) = ?
- \(\frac{(x \cos x+\sin x)}{2 \sqrt{x \sin x}}\)
- \(\frac{1}{2}(x \cos x+\sin x) \cdot \sqrt{x \sin x}\)
- \(\frac{1}{2 \sqrt{x \sin x}}\)
- None of these
Answer: 1. \(\frac{(x \cos x+\sin x)}{2 \sqrt{x \sin x}}\)
y2 = x sin x
= 2y . \(\frac{d y}{d x}\)
= (xcos + sinx).
Question 12. If ex+y= xy, then \(\frac{d y}{d x}\) = ?
- \(\frac{x(1-y)}{y(x-1)}\)
- \(\frac{y(1-x)}{x(y-1)}\)
- \(\frac{(x-x y)}{(x y-y)}\)
- None of these
Answer: 2. \(\frac{y(1-x)}{x(y-1)}\)
(x+ y)= log x + logy
= \(1+\frac{d y}{d x}=\frac{1}{x}+\frac{1}{y} \cdot \frac{d y}{d x}\)
Question 13. If (x + y) = sin (x+ y), then \(\frac{d y}{d x}\) = ?
- -1
- 1
- \(\frac{1-\cos (x+y)}{\cos ^2(x+y)}\)
- None of these
Answer: 1. -1
(x + y) = sin(x + y) ⇒ \(1+\frac{d y}{d x}=\cos (x+y) \cdot\left[1+\frac{d y}{d x}\right]\)
Question 14. If \(\sqrt{ } x+\sqrt{ } y=\sqrt{ } a\),then \(\frac{d y}{d x}\) = ?
- \(\frac{-\sqrt{x}}{\sqrt{y}}\)
- \(-\frac{1}{2} \cdot \frac{\sqrt{y}}{\sqrt{x}}\)
- \(\frac{-\sqrt{y}}{\sqrt{x}}\)
- None of these
Answer: 3. \(\frac{-\sqrt{y}}{\sqrt{x}}\)
⇒ \(\sqrt{ } x+\sqrt{ } y=\sqrt{ } a \Rightarrow \frac{1}{2 \sqrt{ } x}+\frac{1}{2 \sqrt{ } y} \cdot \frac{d y}{d x}\)= 0
Question 15. xy= yx,then \(\frac{d y}{d x}\) =?
- \(\frac{(y-x \log y)}{(x-y \log x)}\)
- \(\frac{y(y-x \log y)}{x(x-y \log x)}\)
- \(\frac{y(y+x \log y)}{x(x+y \log x)}\)
- None of these
Answer: 2. \(\frac{y(y-x \log y)}{x(x-y \log x)}\)
xy = yx ⇒ y log x= x logy. Now, differentiate both sides w.r.t. x.
Question 16. If xpyq= (x + y)y(p+q) ,then \(\frac{d y}{d x}\) = ?
- \(\frac{x}{y}\)
- \(\frac{y}{x}\)
- \(\frac{x^{p-1}}{y^{q-1}}\)
- None of these
Answer: 2. \(\frac{y}{x}\)
plog x+ qlogy= (p + q) log(x+ y).
Question 17. If y = \(x^2 \sin \frac{1}{x}\), then\(\frac{d y}{d x}\) = ?
- \(x \sin \frac{1}{x}-\cos \frac{1}{x}\)
- \(-\cos \frac{1}{x}+2 x \sin \frac{1}{x}\)
- \(-x \sin \frac{1}{x}+\cos \frac{1}{x}\)
- None of these
Answer: 2. \(-\cos \frac{1}{x}+2 x \sin \frac{1}{x}\)
⇒ \(\frac{d y}{d x}=x^2 \cdot\left(\cos \frac{1}{x}\right)\left(\frac{-1}{x^2}\right)+2 x \sin \frac{1}{x}\)
Question 18. If y = cos2 x3, then \(\frac{d y}{d x}\) = ?
- – 3x2sin(2x3)
- -3x2 sin2 x3
- -3x2 cos2(2x3)
- None of these
Answer: 1. – 3x2sin(2x3)
y = \(\left(\cos x^3\right)^2 \Rightarrow \frac{d y}{d x}\)
=2\(\left(\cos x^3\right)\left(-\sin x^3\right)\left(3 x^2\right)\)
=-3x2 \(\sin \left(2 x^3\right)\)
Question 19. If y = \(\log \left(x+\sqrt{x^2+a^2}\right)\), then \(\frac{d y}{d x}\) =?
- \(\frac{1}{2\left(x+\sqrt{x^2+a^2}\right)}\)
- \(\frac{-1}{\sqrt{x^2+a^2}}\)
- \(\frac{1}{\sqrt{x^2+a^2}}\)
- None of these
Answer: 3. \(\frac{1}{\sqrt{x^2+a^2}}\)
⇒ \(\frac{d y}{d x}=\frac{1}{\left(x+\sqrt{x^2+a^2}\right.} \cdot\left\{1+\frac{1}{2 \sqrt{x^2+a^2}} \times 2 x\right\}\)
= \(\frac{1}{\sqrt{x^2+a^2}}\)
Question 20. If y \(=\log \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)\) then\(\frac{d y}{d x}\)= ?
- \(\frac{1}{\sqrt{x}(1-x)}\)
- \(\frac{-1}{x(1-\sqrt{x})^2}\)
- \(\frac{-\sqrt{ } x}{2(1-\sqrt{ } x)}\)
- None of these
Answer: 1. \(\frac{1}{\sqrt{x}(1-x)}\)
y= \(\log (1+\sqrt{ } x)-\log (1-\sqrt{ } x)\)
= \(\frac{d y}{d x}=\left\{\frac{1}{2 \sqrt{ } x(1+\sqrt{ } x)}+\frac{1}{2 \sqrt{ } x(1-\sqrt{ } x)}\right\}\)
= \(\frac{1}{2 \sqrt{x}} \cdot \frac{2}{(1-x)}=\frac{1}{\sqrt{x(1-x)}}\)
Question 21. If y \(=\log \left(\frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}-x}\right)\) , then \(\frac{d y}{d x}\)=?
- \(\frac{2}{\sqrt{1+x^2}}\)
- \(\frac{2 \sqrt{1+x^2}}{x^2}\)
- \(\frac{-2}{\sqrt{1+x^2}}\)
- None of these
Answer: 1. \(\frac{2}{\sqrt{1+x^2}}\)
y = \(\log \left(\sqrt{1+x^2}+x\right)-\log \left(\sqrt{1+x^2}-x\right)\), Now differentiatiate.
Question 22. If y= \(\sqrt{\frac{1+\sin x}{1-\sin x}}\), then \(\frac{d y}{d x}\)=?
- \(\frac{1}{2} \sec ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)\)
- \(\frac{1}{2}{cosec}^2\left(\frac{\pi}{4}-\frac{x}{2}\right)\)
- \(\frac{1}{2}{cosec}\left(\frac{\pi}{4}-\frac{x}{2}\right) \cot \left(\frac{\pi}{4}-\frac{x}{2}\right)\)
- None of these
Answer: 2. \(\frac{1}{2}{cosec}^2\left(\frac{\pi}{4}-\frac{x}{2}\right)\)
y = \(\left\{\frac{1+\cos \left(\frac{\pi}{2}-x\right)}{1-\cos \left(\frac{\pi}{2}-x\right)}\right\}^{\frac{1}{2}}=\left\{\frac{2 \cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \sin ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right\}^{\frac{1}{2}}=\)
= \(\cot \left(\frac{\pi}{4}-\frac{x}{2}\right)\)
Question 23. If y= \(\sqrt{\frac{\sec x-1}{\sec x+1}}\) then \(\frac{d y}{d x}\) = ?
- sec2x
- \(\frac{1}{2} \sec ^2 \frac{x}{2}\)
- \(\frac{-1}{2}{cosec}^2 \frac{x}{2}\)
- None of these
Answer: 2. \(\frac{1}{2} \sec ^2 \frac{x}{2}\)
y = \(\left(\frac{1-\cos x}{1+\cos x}\right)^{\frac{1}{2}}=\left\{\frac{2 \sin ^2(x / 2)}{2 \cos ^2(x / 2)}\right\}^{\frac{1}{2}}\)
= \(\tan \frac{x}{2}\)
Question 24. If y = \(=\sqrt{\frac{1+\tan x}{1-\tan x}}\), then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{2} \sec ^2 x \cdot \tan \left(x+\frac{\pi}{4}\right)\)
- \(\frac{\sec ^2\left(x+\frac{\pi}{4}\right)}{2 \sqrt{\tan \left(x+\frac{\pi}{4}\right)}}\)
- \(\frac{\sec ^2\left(\frac{x}{4}\right)}{\sqrt{\tan \left(x+\frac{\pi}{4}\right)}}\)
- None of these
Answer: 2. \(\frac{\sec ^2\left(x+\frac{\pi}{4}\right)}{2 \sqrt{\tan \left(x+\frac{\pi}{4}\right)}}\)
y= \(\left\{\tan \left(x+\frac{\pi}{4}\right)\right\}^{\frac{1}{2}}\)
= \(\frac{d y}{d x}=\frac{1}{2}\left\{\tan \left(x+\frac{\pi}{4}\right)\right\}^{-\frac{1}{2}} \cdot \sec ^2\left(x+\frac{\pi}{4}\right)\)
Question 25. If y = \(\tan ^{-1}\left(\frac{1-\cos x}{\sin x}\right)\), then \(\frac{d y}{d x}\) = ?
- 1
- -1
- \(\frac{1}{2}\)
- \(\frac{-1}{2}\)
Answer: 3. \(\frac{1}{2}\)
y= \(\tan ^{-1}\left(\frac{1-\cos x}{\sin x}\right)=\tan ^{-1}\left\{\frac{2 \sin ^2(x / 2)}{2 \sin (x / 2) \cos (x / 2)}\right\}\)
= \(\tan ^{-1}\left\{\tan \frac{x}{2}\right\}\)
=\(\frac{x}{2}\)
Question 26. If y= \(\tan ^{-1}\left\{\frac{\cos x+\sin x}{\cos x-\sin x}\right\}\) , then \(\frac{d y}{d x}\) = ?
- 1
- -1
- \(\frac{1}{2}\)
- \(\frac{-1}{2}\)
Answer: 1. 1
y = \(\tan ^{-1}\left\{\frac{\cos x+\sin x}{\cos x-\sin x}\right\}\)
= \(\tan ^{-1}\left\{\frac{1+\tan x}{1-\tan x}\right\}\)
= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}\)
= \(\left(\frac{\pi}{4}+x\right)\)
Question 27. If y= \(\tan ^{-1}\left\{\frac{\cos x+\sin x}{\cos x-\sin x}\right\}\) ,then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{2}\)
- \(\frac{-1}{2}\)
- 1
- -1
Answer: 2. \(\frac{-1}{2}\)
y \(=\tan ^{-1}\left\{\frac{\sin \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}\right\}\)
= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right\}\)
= \(\left(\frac{\pi}{4}-\frac{x}{2}\right)\)
Question 28. If y = \(\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}\) ,then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{2}\)
- \(\frac{-1}{2}\)
- \(\frac{1}{\left(1+x^2\right)}\)
- None of these
Answer: 2. \(\frac{-1}{2}\)
y = \(\tan ^{-1}\left\{\frac{2 \sin ^2(x / 2)}{2 \cos ^2(x / 2)}\right\}^{\frac{1}{2}}\)
⇒ \(\tan ^{-1}\left\{\tan \frac{x}{2}\right\}\)
= \(\frac{x}{2}\)
Question 29. If y= \(\tan ^{-1}\left(\frac{a \cos x-b \sin x}{b \cos x+a \sin x}\right)\) , then \(\frac{d y}{d x}\) = ?
- \(\frac{a}{b}\)
- \(\frac{-b}{a}\)
- 1
- -1
Answer: 4. -1
\(=\tan ^{-1}\left(\frac{\frac{a}{b}-\tan x}{1+\frac{a}{b} \tan x}\right)\)= \(\tan ^{-1}\left(\frac{\tan \theta-\tan x}{1+\tan \theta \tan x}\right)\)
= \(\tan ^{-1} \tan (\theta-x)=\theta-x=\left(\tan ^{-1} \frac{a}{b}-x\right)\)
= \(\frac{d y}{d x}\)= 1
Question 30. If y= sin-1(3x- 4X3), then \(\frac{d y}{d x}\) = ?
- \(\frac{3}{\sqrt{1-x^2}}\)
- \(\frac{-4}{\sqrt{1-x^2}}\)
- \(\frac{3}{\sqrt{1+x^2}}\)
- None of these
Answer: 1. \(\frac{3}{\sqrt{1-x^2}}\)
Putting x= sin θ, we get y= sin 1(sin 3θ) = 3θ = 3sin 1x.
Question 31. If y= cos-1(4X3– 3x), then \(\frac{d y}{d x}\) = ?
- \(\frac{3}{\sqrt{1-x^2}}\)
- \(\frac{-3}{\sqrt{1-x^2}}\)
- \(\frac{4}{\sqrt{1-x^2}}\)
- \(\frac{-4}{\left(3 x^2-1\right)}\)
Answer: 2. \(\frac{3}{\sqrt{1-x^2}}\)
Putting x= cos θ, we get y= cos-1(cos 3θ) = 3θ= 3cos-1x.
Question 32. If y = \(\tan ^{-1}\left(\frac{\sqrt{ } a+\sqrt{ } x}{1-\sqrt{a x}}\right)\), then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{(1+x)}\)
- \(\frac{1}{\sqrt{x}(1+x)}\)
- \(\frac{2}{\sqrt{x}(1+x)}\)
- \(\frac{1}{2 \sqrt{x}(1+x)}\)
Answer: 4. \(\frac{1}{2 \sqrt{x}(1+x)}\)
Put \(\sqrt{ } a\)= tan θ and \(\sqrt{ } x\)= tan Φ.
Then
y= tan1 {tan (θ+ Φ)>)} = θ+ Φ = tan-1 \(\sqrt{ } a\) + tan-1 \(\sqrt{ } x\).
Question 33. If y = tan-1\(\frac{2 x}{\left(1+x^4\right)}\), then \(\frac{d y}{d x}\) = ?
- \(\frac{2 x}{\left(1+x^4\right)}\)
- \(\frac{-2 x}{\left(1+x^4\right)}\)
- \(\frac{x}{\left(1+x^4\right)}\)
- None of these
Answer: 1. \(\frac{2 x}{\left(1+x^4\right)}\)
Putting x2= tan θ, we get:
y= \(y=\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+\theta\right)\right\}=\left(\frac{\pi}{4}+\theta\right)\)
= \(\left(\frac{\pi}{4}+\tan ^{-1} x^2\right)\)
Question 34. If y = cos-1 x3, then\(\frac{d y}{d x}\) = ?
- \(\frac{-1}{(1+x)}\)
- \(\frac{2}{\sqrt{(1+x)}}\)
- \(\frac{-1}{2 \sqrt{ } x(1+x)}\)
- None of these
Answer: 3. \(\frac{-1}{2 \sqrt{ } x(1+x)}\)
y = \(\cot ^{-1} \sqrt{x}\)
⇒ \(\frac{d y}{d x}=\frac{-1}{(1+x)} \cdot \frac{1}{2 \sqrt{ } x}=\frac{-1}{2 \sqrt{ } x(1+x)}\)
Question 35. If y = cos-1x3, then\(\frac{d y}{d x}\) = ?
- \(\frac{-1}{\sqrt{1-x^6}}\)
- \(\frac{-3 x^2}{\sqrt{1-x^6}}\)
- \(\frac{-3}{x^2 \sqrt{1-x^6}}\)
- None of these
Answer: 2. \(\frac{-3 x^2}{\sqrt{1-x^6}}\)
y = \(\cos ^{-1} x^3\)
⇒ \(\frac{d y}{d x}=\frac{-3 x^2}{\sqrt{1-x^6}}\)
Question 36. If y= tan-1(sec x + tan x), then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{2}\)
- \(\frac{1}{2}\)
- 1
- None of these
Answer: 1. \(\frac{1}{2}\)
y= \(\tan ^{-1}\left(\frac{1+\sin x}{\cos x}\right)=\tan ^{-1}\left[\frac{\{\cos (x / 2)+\sin (x / 2)\}^2}{\cos ^2(x / 2)-\sin ^2(x / 2)}\right]\)
= \(\tan ^{-1}\left\{\frac{\cos (x / 2)+\sin (x / 2)}{\cos (x / 2)-\sin (x / 2)}\right\}\)
= \(\tan ^{-1}\left\{\frac{1+\tan (x / 2)}{1-\tan (x / 2)}\right\}\)
= \(\tan ^{-1}\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}\)
= \(\left(\frac{\pi}{4}+\frac{x}{2}\right)\)
Question 37. If y \(\cot ^{-1}\left(\frac{1-x}{1+x}\right)\), then \(\frac{d y}{d x}\)
- \(\frac{-1}{\left(1+x^2\right)}\)
- \(\frac{1}{\left(1+x^2\right)}\)
- \(\frac{1}{\left(1+x^2\right)^{3 / 2}}\)
- None of these
Answer: 2. \(\frac{1}{\left(1+x^2\right)}\)
Put x= tan θ. Then, y= cot-1.tan\(\left(\frac{\pi}{4}-\theta\right)\)
= \(\cot ^{-1}\left[\cot \left\{\frac{\pi}{2}-\left(\frac{\pi}{4}-\theta\right)\right\}\right]\)
= \(\left(\frac{\pi}{4}+\theta\right)\)
y = \(\frac{\pi}{4}+\tan ^{-1} x\)
Question 38. If y= \(y\sqrt{\frac{1+x}{1-x}}\), then \(\frac{d y}{d x}\)
- \(\frac{2}{(1-x)^2}\)
- \(\frac{x}{(1-x)^{3 / 2}}\)
- \(\frac{1}{(1-x)^{3 / 2} \cdot(1+x)^{1 / 2}}\)
- None of these
Answer: 3. \(\frac{1}{(1-x)^{3 / 2} \cdot(1+x)^{1 / 2}}\)
log y = \(\frac{1}{2}\{\log (1+x)-\log (1-x)\}\)
⇒ \(\frac{1}{y} \cdot \frac{d y}{d x}\)
= \(\frac{1}{2}\left\{\frac{1}{(1+x)}+\frac{1}{(1-x)}\right\}\)
Question 39. If y = \(\sec ^{-1}\left(\frac{x^2+1}{x^2-1}\right)\) , then \(\frac{d y}{d x}\)= ?
- \(\frac{-2}{\left(1+x^2\right)}\)
- \(\frac{2}{\left(1+x^2\right)}\)
- \(\frac{-1}{\left(1-x^2\right)}\)
- None of these
Answer: 1. \(\frac{-2}{\left(1+x^2\right)}\)
Put x= cot θ. Then
y = \(\sec ^{-1}\left(\frac{1+\tan ^2 \theta}{1-\tan ^2 \theta}\right)\)
= \(\sec ^{-1}\left(\frac{1}{\cos 2 \theta}\right)=\sec ^{-1}(\sec 2 \theta)\)
= 2θ = 2 cot x-1
Question 40. If y = \(\sec ^{-1}\left(\frac{1}{2 x^2-1}\right)\),then \(\frac{d y}{d x}\)= ?
- \(\frac{-2}{\left(1+x^2\right)}\)
- \(\frac{-2}{\left(1-x^2\right)}\)
- \(\frac{-2}{\sqrt{1-x^2}}\)
- None of these
Answer: 3. \(\frac{-2}{\sqrt{1-x^2}}\)
Put x= cos θ.
Then , y= \(\sec ^{-1}\left(\frac{1}{2 \cos ^2 \theta-1}\right)\)
= sec(sec 2θ) = 2 θ = 2 cos-1 x
Question 41. If y = \(\tan ^{-1}\left\{\frac{\sqrt{1+x^2}-1}{x}\right\}\), then \(\frac{d y}{d x}\)= ?
- \(\frac{1}{\left(1+x^2\right)}\)
- \(\frac{2}{\left(1+x^2\right)}\)
- \(\frac{1}{2\left(1+x^2\right)}\)
- None of these
Answer: 3. \(\frac{1}{2\left(1+x^2\right)}\)
Put x = tan θ.
Then, y =\(\frac{1}{2}\) tan-1 x
Question 42. If \(y=\sin ^{-1}\left\{\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right\}\) , then \(\frac{d y}{d x}\) = ?
- \(\frac{-1}{2 \sqrt{1-x^2}}\)
- \(\frac{1}{2 \sqrt{1-x^2}}\)
- \(\frac{1}{2\left(1+x^2\right)}\)
- None of these
Answer: 1. \(\frac{-1}{2 \sqrt{1-x^2}}\)
Put x = cos θ. Then,
y= \(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x\)
Question 43. If x= at2, y= 2at, then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{t}\)
- \(\frac{-1}{t^2}\)
- \(\frac{-2}{t}\)
- None of these
Answer: 1. \(\frac{1}{t}\)
⇒ \(\frac{d x}{d t}=2 a t\)
⇒ \(\frac{d y}{d t}=2 a\)
So, \(\frac{d y}{d x}=\frac{(d y / d t)}{(d x / d t)}\)
= \(\frac{1}{t}\)
Question 44. If x= a sec θ, y= b tan θ, then \(\frac{d y}{d x}\) =?
- \(\frac{b}{a} \sec \theta\)
- \(\frac{b}{a}{cosec} \theta\)
- \(\frac{b}{a} \cot \theta\)
- None of these
Answer: 2. \(\frac{b}{a}{cosec} \theta\)
⇒ \(\frac{d x}{d \theta}=a \sec \theta \tan \theta\)
= \(\frac{d y}{d \theta}=b \sec ^2 \theta\). \(\frac{d y}{d x}=\frac{(d y / d \theta)}{(d x / d \theta)}\)
= \(\frac{b}{a}{cosec} \theta\)
Question 45. If x = a cos 2θ, y= b sin 2θ, then \(\frac{d y}{d x}\) = ?
- \(\frac{-a}{b}\)
- \(\frac{a}{b}\) cot θ
- \(\frac{-b}{a}\)
- None of these
Answer: 3. \(\frac{-b}{a}\)
⇒ \(\frac{d x}{d \theta}=-2 a \cos \theta \sin \theta\),
= \(\frac{d y}{d \theta}=2 b \sin \theta \cos \theta\)
= \(\frac{d y}{d x}=\frac{(d y / d \theta)}{(d x / d \theta)}\)
= \(\frac{-b}{a}\)
Question 46. If x= a(cos θ+ θ sin θ) and y = a(sin θ — θ cos θ), then\(\frac{d y}{d x}\) =?
- cot θ
- tan θ
- cot θ
- a tan θ
Answer: 2. tan θ
⇒ \(\frac{d y}{d x}=\frac{(d y / d \theta)}{(d x / d \theta)}\)
Question 47. If y = \(x^{x^{x \ldots \infty}}\), then \(\frac{d y}{d x}\)= ?
- \(\frac{y}{x(1-\log x)}\)
- \(\frac{y^2}{x(1-\log x)}\)
- \(\frac{y^2}{x(1-y \log x)}\)
- None of these
Answer: 3. \(\frac{y^2}{x(1-y \log x)}\)
y = \(x^y\)
log y = y log x
⇒ \(\frac{1}{y} \frac{d y}{d x}\)
⇒ \(\frac{y}{x}+(\log x) \frac{d y}{d x}\)
Question 48. If y = \(\sqrt{x+\sqrt{x+\sqrt{x+}}} \ldots \infty\) , then \(\frac{d y}{d x}\) = ?
- \(\frac{1}{(2 y-1)}\)
- \(\frac{1}{\left(y^2-1\right)}\)
- \(\frac{2 y}{\left(y^2-1\right)}\)
- None of these
Answer: 1. \(\frac{1}{(2 y-1)}\)
y= \(\sqrt{x+y}\)
y2= \(x+y\)
⇒ \(2 y \frac{d y}{d x}=\cos x+\frac{d y}{d x}\)
Question 49. If y = \(\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+}}} \ldots\), then \(\frac{d y}{d x}\) = ?
- \(\frac{\sin x}{(2 y-1)}\)
- \(\frac{\cos x}{(y-1)}\)
- \(\frac{\cos x}{(2 y-1)}\)
- None of these
Answer: 3. \(\frac{\cos x}{(2 y-1)}\)
y = \(e^{x+y} \Rightarrow x+y=\log y\)
y = sin x+y
= \(2 y \frac{d y}{d x}\)
= \(\cos x+\frac{d y}{d x}\)
Question 50. If y = \(e^x+e^{x+\ldots}\), then\(\frac{d y}{d x}\)
- \(\frac{1}{(1-y)}\)
- \(\frac{y}{(1-y)}\)
- \(\frac{y}{(y-1)}\)
- None of these
Answer: 2. \(\frac{y}{(1-y)}\)
y= e(x+y)
x+y =logy
1+ \(+\frac{d y}{d x}=\frac{1}{y} \cdot \frac{d y}{d x}\)
Question 51. The value k for which \(f(x)=\left\{\begin{array}{c}
\frac{\sin 5 x}{3 x}, \text { if } x \neq 0 \\
k, \text { if } x=0
\end{array} \text { is continuous at } x=0\right.\) is
- \(\frac{1}{3}\)
- 0
- \(\frac{3}{5}\)
- \(\frac{5}{3}\)
Answer: 4. \(\frac{5}{3}\)
For continuity at x= 0, we must have \(\lim _{x \rightarrow 0} f(x)\) = f(0).
⇒ \(\lim _{x \rightarrow 0} f(x)\)
= \(\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x} \times \frac{5}{3}=\frac{5}{3} \lim _{5 x \rightarrow 0} \frac{\sin 5 x}{5 x}\)
= \(\left(\frac{5}{3} \times 1\right)=\frac{5}{3}\)
∴ We must have,f(0) = \(\frac{5}{3}\)
k = \(\frac{5}{3}\)
Question 52. \(\left\{\begin{array}{l}
x \sin \frac{1}{x}, \text { if } x \neq 0 \\
0, \text { when } x=0 .
\end{array}\right.\) Then, which of the following is the true statement?
- f(x) is not defined at x= 0
- \(\lim _{x \rightarrow 0} f(x)\)does not exist
- f(x) is continuous at x= 0
- f(x) is discontinuous at x= 0
Answer: 3. f(x) is continuous at x= 0
f(0) = 0.
⇒ \(\lim _{x \rightarrow 0} f(x)\) = \(\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0 \times(\text { a finite quantity })\)
= 0
∴ f(x)is continuous at x= 0
Question 53. The value of k for which f(x) = x is continuous at x= 0, is
- 7
- 4
- 3
- None of these
Answer: 1.7
f(0)=k.
⇒ \(\lim _{x \rightarrow 0} f(x)\)
= \(=\lim _{x \rightarrow 0} \frac{3 x+4 \tan x}{x}=\)
= \(\lim _{x \rightarrow 0}\left\{3+\frac{4 \tan x}{x}\right\}\)
(3+4) = 7
∴ f(x) is continuous at x= 0 ⇔ f(0) = 7 ⇔ k= 7.
Question 54. Let f(x) =x3/2 Then, f'(0)= ?
- \(\frac{3}{2}\)
- \(\frac{1}{2}\)
- Does not exist
- None of these
Answer: 3. Does not exist
\(L f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}\)= \(\lim _{h \rightarrow 0} \frac{\left(h^{3 / 2}-0\right)}{-h}=\lim _{h \rightarrow 0}(-h)^{1 / 2}\), which does not exist, since
(-h)1/2 is imaginary
Question 55. The function f(x) = lx I ∀ x ∈ R is
- Continuous but not differentiable at x = 0
- Differentiable but not continuous at x = 0
- Neither continuous nor differentiable at x = 0
- None of these
Answer: 1. Continuous but not differentiable at x = 0
f(0+0) = \(\lim _{h \rightarrow 0}|0+h|\)
= \(\lim _{h \rightarrow 0}|h|=0\)
f(0-0)= \(\lim _{h \rightarrow 0}|0-h|\)
= \(\lim _{h \rightarrow 0}|-h|=\lim _{h \rightarrow 0}|h|=0\) and f(0)= 0
∴ f(x) is continuous at x= 0
Rf'(0)= \(\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}\)
= \(\lim _{h \rightarrow 0} \frac{f(h)-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}\)
= \(\lim _{h \rightarrow 0} \frac{h}{h}=1\)
lf'(0)= \(\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\lim _{h \rightarrow 0} \frac{f(-h)-0}{-h}\)
= \(\lim _{h \rightarrow 0} \frac{|-h|}{-h}\)
= \(\lim _{h \rightarrow 0} \frac{h}{-h}=-1\)
∴ Rf'(0) ≠ L f'(0), which shows that f(x) is not differentiable at x= 0.
Question 56. \(
\text { The function } f(x)=\left\{\begin{array}{l}
1+x, \text { when } x \leq 2 \\
5-x, \text { when } x>2
\end{array}\right. \text { is }\)
- Continuous as well as differentiable at x = 2
- Continuous but not differentiable at x = 2
- Differentiablebutnot continuous at x = 2
- None of these
Answer: 2. Continuous but not differentiable at x=2
f(2+ 0) = \(\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0}\{5-(2+h)\}=3\)
f(2 – 0)= \(\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0}\{1+(2-h)\}=3\) and f(2) = 3
∴ f(x) is continuous at x= 2
⇒ Rf'(2) = \(\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(3-h)-3}{h}\)
= \(\lim _{h \rightarrow 0} \frac{-h}{h}=-1\)
⇒ Lf'(2) = \(\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}=\lim _{h \rightarrow 0} \frac{(3-h)-3}{-h}\)
= \(\lim _{h \rightarrow 0} \frac{h}{h}=1\)
∴ f (x) is not differentiable at x= 2
Question 57. \(
\text { If the function } f(x)=\left\{\begin{array}{r}
k x+5, \text { when } x \leq 2 \\
x-1, \text { when } x>2
\end{array}\right. \text { is }\) continuous at x= 2, then k= ?
- 2
- -2
- 3
- -3
Answer: 2.- 2
f(2) = \(\lim _{x \rightarrow 2} f(x)\)
= \(\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h)\)
= \(\lim _{h \rightarrow 0}(2+h-1)=1\)
= \(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)\)
= \(\lim _{h \rightarrow 0}\{k(2-h)+5\}\)
∴ 2k+5 = 1
k= -2
Also,f(2) = 2k+5 = 1 .Hence, k= -2
Question 58. If the function \(f(x)=\left\{\begin{array}{c}
\frac{1-\cos 4 x}{8 x^2}, x \neq 0 \\
k, x=0
\end{array}\right.\) is continuous at x= 0 , then k= ?
- 1
- 2
- \(\frac{1}{2}\)
- \(\frac{-1}{2}\)
Answer: 3. \(\frac{1}{2}\)
⇒ \(\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)\)
= \(\lim _{h \rightarrow 0} \frac{1-\cos 4 h}{8 h^2}\)
= \(\lim _{h \rightarrow 0} \frac{2 \sin ^2 2 h}{8 h^2}\)
= \(\frac{1}{2} \lim _{h \rightarrow 0}\left(\frac{\sin 2 h}{2 h}\right)^2\)
= \(\left(\frac{1}{2} \times 1^2\right)=\frac{1}{2}\)
⇒ \(\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin ^2 a x}{a^2 x^2} \times a^2\)
= \(a^2 \cdot \lim _{a x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)^2\)
= \(a^2 \times 1^2=a^2\)
For continuity, we must have f(0) = \(\frac{1}{2}\)
For continuity, we must have f(0) = a2
Question 59. If the function f(x) \(\left\{\begin{array}{r}
\frac{\sin ^2 a x}{x^2}, \text { when } x \neq 0 \\
k, \text { when } x=0
\end{array}\right.\) is continuous at x= 0, then k= ?
- a
- a2
- -2
- -4
Answer: 2. a2
Question 60. If the function f(x) = \(\left\{\begin{aligned}
\frac{k \cos x}{(\pi-2 x)}, \text { when } x & \neq \frac{\pi}{2} \\
3, \text { when } x & =\frac{\pi}{2}
\end{aligned}\right.\)
- 3
- -3
- -5
- 6
Answer: 4. 6
⇒ \(\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin ^2 a x}{a^2 x^2} \times a^2\)
= \(a^2 \cdot \lim _{a x \rightarrow 0}\left(\frac{\sin a x}{a x}\right)^2\)
= \(a^2 \times 1^2=a^2\)
For continuity, we must have f(x) = a2
Question 61. At x= 2,f(x) = [x] is
- Continuous but not differentiable
- Differentiable but not continuous
- Continuous as well as differentiable
- None of these
Answer: 4. None of these
f(2) = [2] = 2
f(2 + 0)= \(\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0}[2+h]\)= 2
f(2 – 0)= \(\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0}[2-h]\)= 1
∴ f(x) is not continuous at x= 2
Rf'(2) = \(\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{[2+h]-[2]}{h}\)
\(\lim _{h \rightarrow 0} \frac{(2-2)}{h}\) = 0
Lf'(2)= \(\lim _{h \rightarrow 0} \frac{f(2-h)-f(2)}{-h}=\lim _{h \rightarrow 0} \frac{[2-h]-[2]}{-h}\)
= \(\lim _{h \rightarrow 0} \frac{(1-2)}{-h}=\)
= \(\lim _{h \rightarrow 0} \frac{1}{h}=\infty\)
∴ f(x) is not differentiable at x = 2
Question 62. \(
\text { Let } f(x)=\left\{\begin{array}{r}
\frac{x^2-2 x-3}{x+1^2}, \text { when } x \neq-1 \\
k, \text { when } x=-1
\end{array}\right.\)
- 4
- -4
- -3
- 2
Answer: 2. -4
⇒ \(\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{(x-3)(x+1)}{(x+1)}\)
= \(\lim _{x \rightarrow-1}(x-3)\) = -4
For continuity, we must have, f(-1) =-4
Question 63. The function f(x) = x3– 6x2 + I5x- 12 is
- Strictly decreasing on R
- Strictly increasing on R
- Increasingin (-∞, 2] and decreasing in (2, ∞)
- None of these
Answer: 2. Strictly increasing on R
f'(x) = 3x2 -12x+15 = 3(x2 -4x+ 5) = 3[(x-2)2 + 1] > 0.
⇒ f'(x) > 0 for all x ∈ R ⇒ f(x) is strictly increasing on R.
Question 64. The function f (x) = 4- 3x + 3X2 -x3 is
- Decreasing on R
- Increasing on R
- Strictly decreasing on R
- Strictly increasing on R
Answer: 1. Decreasing on R
f'(x) =-3 + 6x- 3x2= 3(x2– 2x+ 1) = -3(x- 1)2 < 0.
⇒ f'(x) < 0 for all x ∈ R ⇒ f(x) is decreasing on R.
Question 65. The function f(x) = 3x + cos 3x is
- Increasing on R
- Strictly increasing on R
- Decreasing on R
- Strictly decreasing on R
Answer: 1. Increasing on R
f'(x) = 3- 3sin 3x = 3(1- sin 3x) > 0 since -1 < sin 3x < 1.
f( x) > 0 for all x ∈ R ⇒ f(x) is increasing on R.
Question 66. The function/ f(x) = x3– 6X2+ 9x+ 3 is decreasing for
- 1 < x < 3
- x>1
- x <1
- x <1 or x > 3
Answer: 1. 1 < x < 3
f'(x) = 3x2– 12 + 9 = 3Cx2– 4x + 3) = 3(x- 1)(x- 3)
f'(x) = 0 ⇒ x=1 or x= 3.
There are two factors in f'(x), so we start with + ve sign.
∴ f(x) is decreasing for 1 < x < 3.
Question 67. The function f(x) -x3– 27x + 8 is increasing when
- 1 x 1 <3
- 1 x 1 >3
- -3 < x < 3
- None of these
Answer: 2. 1x 1 >3
f'( x) = 3x2 -27= 3(x2– 9) = 3(x+ 3)(x- 3)
f'(x)= 0 ⇒ x=-3 or x= 3.
There are two factors in f(x), so we start with +ve sign.
f(x) is increasing when x < -3 or x > 3, i.e., when IxI >3.
Question 68. f(x) = sin x is increasing in
- \(\left(\frac{\pi}{2}, \pi\right)\)
- \(\left(\pi, \frac{3 \pi}{2}\right)\)
- [0,π]
- \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)
Answer: 4. \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)
∴ f'(x)= cos x > 0 in \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)
∴ f(x) is increasing in \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\)
Question 69. f(x) = \(\frac{2 x}{\log x}\) is increasing in
- (0,1)
- (1, e)
- (e, ∞)
- (-∞,e)
Answer: 3. (e, ∞)
⇒ \(f^{\prime}(x)=\frac{(\log x) \cdot 2-2 x \cdot \frac{1}{x}}{(\log x)^2}\)
= \(\frac{2(\log x-1)}{(\log x)^2}\)
∴ f'(x)> 0 ⇔ log x-1>0 ⇔ log x>1 ⇔ log x>log e ⇔ x>e.
∴ f(x) is increasing (e, ∞)
Question 70. f(x) = (sin x- cos x) is decreasing
- \(\left(0, \frac{3 \pi}{4}\right)\)
- \(\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)\)
- \(\left(\frac{7 \pi}{4}, 2 \pi\right)\)
- None of these
Answer: 2. \(\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)\)
f'(x)= (cos x+ sinx) = \(\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right)\)
= \(\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)\)
∴ f(x)’ \(\sin \left(\frac{\pi}{4}+x\right)<0\)
= \(\pi<\frac{\pi}{4}+x<2 \pi\)
= \(\frac{3 \pi}{4}<x<\frac{7 \pi}{4}\)
∴ f (x) is decreasing in \(\left(\frac{3 \pi}{4}, \frac{7 \pi}{4}\right)\)
Question 71. f(x) = \(\frac{x}{\sin x}\) is
- Increasing in (0, 1)
- Decreasing in (0, 1)
- Increasingin \(\left(0, \frac{1}{2}\right)\) and decreasing \(\left(, \frac{1}{2}\right)\)in
- None of these
Answer: 1. Increasing in (0, 1)
f'(x)= \(\frac{\sin x-x \cos x}{\sin ^2 x}\)
= \(\frac{\cos x(\tan x-x)}{\sin ^2 x}\)
0<x<1 ⇒ tan x >x and cos x >0 ⇒ cos x(tan x- x) > 0
⇒ f'(x)>0
∴ f(x) is increasing (0, 1).
Question 72. f(x) = xx is decreasing in the interval
- (0,e)
- \(\left(0, \frac{1}{e}\right)\)
- (0,1)
- None of these
Answer: 2. \(\left(0, \frac{1}{e}\right)\)
f (x) = (1 +log x)
f'(x)< 0 ⇔ (1 +logx)<0 ⇒ logx<-1
= \(\log \frac{1}{e}\)
= x >0 and \(x<\frac{1}{e}\)
f(x) is decreasing in (0, \(\frac{1}{e}\))
Question 73. f(x) = x2ex is increasing in
- (-2,0)
- (0,2)
- (2,∞)
- (-∞, ∞)
Answer: 2. (0,2)
f'(x) = 2xe–x– x2e–x= xe–x(2- x)
∴ f'(x) > 0 < t ⇒ > 0 and (2- x) > 0 ⇔ 0< x <2.
∴ f(x) is increasing in (0, 2).
Question 74. f(x) = sin x- kx is decreasing for all x ∈ R, when
- k<1
- k≥3
- k<3
- k≤3
Answer: 3. k<3
f'(x)- (cos x-k) and therefore,
f(x) is decreasing ⇔ f'(x) <0⇒ cos x- k<0
⇒ cos x<k ⇔ k>cosx ⇒ k>1
Question 75. f(x) = (x + 1)3(x- 3)3 is increasing in
- (-∞, 1)
- (-1,3)
- (3, ∞)
- (1,∞)
Answer: 4. (1,∞)
f'(x) = (x+1) (x- 3)3
f'(x) = 3(x+ 1)3(x- 3)2+ 3(x+ 1)2(x- 3)3
= 3(x+ 1)2(x- 3)2[(x+1) + (x- 3)] = 3(x+1)2(x- 3)2(x-1)
⇒ f'(x) > 0 when (x- 1) > 0, i.e., when x > 1.
∴ f(x) is increasing in (1, ∞).
Question 76. f(x) = [x(x-3)]2 is increasing in
- (0,∞)
- (-,∞,0)
- (1, 3)
- (0,\(\frac{1}{3}\)∪(3,∞)
Answer: 4. (0,\(\frac{1}{3}\))∪(3,∞)
f(x) = [x(x- 3)]2 ⇒ f(x)= 2x(x- 3)(2x- 3).
f'(x) = 0 ⇒ x = 0 or x= \(\frac{1}{3}\) or x = \(\frac{1}{3}\) 3.
∴ f (x) is increasing when 0<x <-or x>3.
∴ f(x) is increasing in(0,\(\frac{1}{3}\)).
Question 77. If f(x) = kx3– 9x2 + 9x + 3 is increasing for every real number x, then
- k>3
- k≥3
- k<3
- k≤3
Answer: 1. k>3
∴ f(x) = 3kx2– 18x+ 9= 3(kx2– 6x+ 3).
This is positive when k > 0 and (36- 12k) < 0 ⇒ k> 3
Question 78. f(x) = \(\frac{x}{\left(x^2+1\right)}\) is increasing in
- (-1,1)
- (-1, ∞)
- (∞, -1)∪(1,∞)
- None of these
Answer: 1. (-1,1)
f'(x)= \(\frac{\left(x^2+1\right) \cdot 1-x \cdot 2 x}{\left(x^2+1\right)^2}=\frac{\left(1-x^2\right)}{\left(1+x^2\right)^2}\)
f'(x)> 0 ⇔(1-x2)>0 < ⇒ x2< 1 < ⇒ -1< X <1.
∴ f(x) is increasing in (-1, 1)
Question 79. The least value of k for which f(x) = x2 + kx+1 is increasing on (1, 2), is
- -2
- -1
- 1
- 2
Answer: 1. -2
f'(x)= (2x+ k).
1< x < 2 ⇒ 2< 2x < 4 ⇒ 2+k < 2x + k < 4+ k = 2+k< f(x) <4 + k
f (x) is increasing o (2x +k)>0 ⇔ 2+ k> 0 ⇔ k >-2.
Least value of k is -2.
Question 80. f(x) =IxI has
- Minimum at x= 0
- Maximum at x = 0
- Neither a maximum nor a minimum at x = 0
- None of these
Answer: 1. Minimum at x= 0
f(x) = IxI > 0 for all x ∈ R.
The least value of I x I is 0 at x = 0.
f(x) = IxI has minima at x= 0
Question 81. When x is positive, the minimum value of xx is
- ee
- e1/e
- e–1/e
- (1/e)
Answer: 3. e–1/e
f(x) = x2 ⇒ f'(x) = f(1 +log x) and f”(x) = \(x^x\left[\frac{1}{x}+(1+\log x)^2\right]\)
f'(x) = 0 ⇒ 1 +log x = 0 ⇒ log x =-l \(\log \left(\frac{1}{e}\right) \Rightarrow x=\left(\frac{1}{e}\right)\)
[f”(x)]x= (1/e) = \(e\left(\frac{1}{e}\right)^{1 / e}\)>0.
x= \(\frac{1}{e}\)is apoint ofminima.
Minimum value of x is \(\left(\frac{1}{e}\right)^{1 / e}=e^{-1 / e}\)
Question 82. The maximum value of \(\left(\frac{\log x}{x}\right)\) is
- \(\left(\frac{1}{e}\right)\)
- \(\left(\frac{2}{e}\right)\)
- e
- 1
Answer: 1. \(\left(\frac{1}{e}\right)\)
f(x) = \(\frac{\log x}{x}\)
f'(x)= \(\frac{x \cdot \frac{1}{x}-\log x \cdot 1}{x^2}=\frac{(1-\log x)}{x^2}\)
f'(x) = \(\frac{x^2 \cdot \frac{1}{x}-(1-\log x) \cdot 2 x}{x^4}=\frac{(-3+2 \log x)}{x^3}\)
f'(x) = 0 ⇒ 1-logx= 0 ⇒ log x=1 = log e ⇒ x= e.
f”(e)= \(\left(\frac{-3+2}{e^3}\right)=\frac{-1}{e^3}\)<0
x= e is a point of maxima
Maximum value of f(x) is \(\frac{1}{e}(\log e)=\frac{1}{e}\)
Question 83. f(x) = cosec x in (-π, 0) has a maxima at
- x = 0
- x =\(\frac{-\pi}{4}\)
- x =\(\frac{-\pi}{3}\)
- x =\(\frac{-\pi}{2}\)
Answer: 4. x =\(\frac{-\pi}{2}\)
f(x) = cosec x ⇒ f'(x) = -cosec x cot x’
= f”(x) = cosec3x+ cosec x (cot2x) = cosec x (cosec2x+ cot2x)
= cosec x (2cosec2x-1)
f(x) = 0 ⇒ cot x= 0 ⇒ X= \(\frac{-\pi}{2}\)
⇒ \(f^{\prime \prime}\left(\frac{-\pi}{2}\right)=\operatorname{cosec}\left(\frac{-\pi}{2}\right)\left[2 \operatorname{cosec}^2\left(\frac{-\pi}{2}\right)-1\right]\)
= (-1)(2-1)= -1 < 0.
x = \(\frac{-\pi}{2}\)is a point of maxima
Question 84. If x > 0 and xy=1, the minimum value of (x+ y) is
- -2
- 1
- 2
- None of these
Answer: 3. 2
xy = 1
y = \(\frac{1}{x}\)
Lest S = x+y = x+ \(\frac{1}{x}\)
Then , \(\frac{d s}{d x}=\left(1-\frac{1}{x^2}\right)=\frac{\left(x^2-1\right)}{x^2}\) and \(\frac{d^2 s}{d x^2}=\frac{2}{x^3}\)
\(\frac{d s}{d x}\) = 0
x2-1= 0 x = ± 1
⇒ \(\left.\left.\frac{d^2 s}{d x^2}\right]_{(x=-1)}=-2<0 \text { and } \frac{d^2 s}{d x^2}\right]_{(x=1)}\)
= 2>0
S is minimum at x=1 and minimum value of S = (1 + 1) = 2
Question 85. The minimum value of \(\left(x^2+\frac{250}{x}\right)\)
- 0
- 25
- -39
- None of these
Answer: 4. None of these
Let f(x) \(\left(x^2+\frac{250}{x}\right)\)
Then f'(x)= \(\left(2 x-\frac{250}{x^2}\right)and\) f”(x} = \(\left(2+\frac{500}{x^3}\right)\)
f'(x) = 0 ⇒ 2x3 -250= 0
x3 = \(\frac{250}{2}\)
x3 = 125
x3 = 53
⇒ x= 5.
f”(5)= \(\left(2+\frac{500}{125}\right)\)
= 6 > 0
f(x) is minimum at x= 5 and minimum value = \(\left(25+\frac{250}{5}\right)\)= 75
Question 86. The minimum value of f(x) = 3x4– 8X3– 48x+ 25 on [0, 3] is
- 16
- 25
- 50
- 75
Answer: 3. 50
f(x) = 12x3– 24x2+ 24x- 48 = 12(x- 2)(x2+ 2)
f”(x)= 36x2– 48x + 24=12(3x2– 4x+ 2).
f'(x) = 0 ⇒ x= 2 and f”(2) = 12(3x4-4x2 + 2) = 72>0
x= 2 is a point of minima.
Minimum value=min {f(0),f(2),f(3)}
= min {25, -39, 16} =-39.
Question 87. The maximum value of f(x) = (x- 2)(x- 3)2 is
- \(\frac{7}{3}\)
- 3
- \(\frac{4}{27}\)
- 27
Answer: 3. \(\frac{4}{27}\)
f(x) = (x- 2)(x- 3)2 ⇒ f(x)= (x- 3)(3x- 7) and f”(x) = (6x- 16).
f'(x) = 0 ⇒ x= 3 or x= \(\frac{7}{3}\)
f”(3)= 2>0 and f” (\(\frac{7}{3}\))= – 2>0.
x = \(\frac{7}{3}\) is a point of maxima.
Maximum value = (\(\frac{7}{3}\)– 2)(\(\frac{7}{3}\)-3) = \(\frac{4}{27}\)
Question 88. The least value off (x) = (ex+ e–x) is
- -2
- 0
- 2
- None of these
Answer: 3. 0
f'(x) = ex– e–x and f”(x) = ex+ e–x
f'(x) = 0 ⇒ ex– e–x = 0
⇒ ex= e–x
⇒ e2x= e0
⇒ x = 0.
f”(0) = e°+ \(\frac{1}{e^0}\)= (1 + 1) = 2 > 0.
f(x) is minimum at x= 0 and minimum value of f(x) is 2