Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals

CBSE Class 12 Maths Chapter 8 Application Of Integrals Important Questions

Question 1. Using integration, find the area bounded by the curve y ²= 4x, y-axis, and y = 3.

Or,

Using integration, find the region’s area bounded by the line 2y = – x + 8, x-axis. x = 2 and x = 4.

Solution:

Given curve is y² = 4x ….(1)

and given line is y = 3 …..(2)

From equations (1) and (2):

Point of intersection is B(9/4, 3)

Read and Learn More CBSE Class 12 Maths Important Question and Answers

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Integrals Area Bounded By The Curve

⇒ Required Area = \(\int_0^3\) x dy

= \(\frac{1}{4} \int_0^3 y^2, d y=\frac{1}{4}\left[\frac{y^3}{3}\right]_0^3=\frac{1}{4}\left[\frac{3^3}{3}-\frac{0}{3}\right]=\left(\frac{1}{4}, \frac{27}{3}\right)=\frac{9}{4} \text { sq. units }\)

Or,

Given lines are 2y + x = 8, x = 2 and x = 4

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Integrals Area Region Bounded By The Curve

⇒ Required area = \(\int_2^4 y \mathrm{dx}=\int_2^4\left(\frac{8-\mathrm{x}}{2}\right) \mathrm{dx}\)

= \(\int_2^4\left(4-\frac{1}{2} \mathrm{x}\right) \mathrm{dx}=\left[4 \mathrm{x}-\frac{1}{2}\left(\frac{\mathrm{x}^2}{2}\right)\right]_2^4\)

= \(\left[4 \times 4-\frac{1}{4}(4)^2\right]-\left[4 \times 2-\frac{1}{4}(2)^2\right]\)

=12-7=5

∴Required Area = 5 sq. units

Class 12 Maths Application Of Integrals Solved Examples 

Question 2. Using integration, find the area bounded by the circle x² + y² = 9.

Solution:

The whole area enclosed by the given circle will be 4 times the area of the region AOBA bounded by the curve, x-axis, and the ordinates x = 0 and x = 3 [as the circle is symmetrical about both the x-axis and y-axis]

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Are Bounded By The Circle

⇒ Required area = \(4 \int_0^3 y d x=4 \int_0^3 \sqrt{3^2-x^2} d x \quad\left[x^2+y^2=3^2 \text { gives } y= \pm \sqrt{3^2-x^2}\right]\)

As the region AOBA lies in the first quadrant, v is taken as positive. Integrating, we get the whole area enclosed by the given circle

⇒ Required area = \(4\left[\frac{x}{2} \sqrt{3^2-x^2}+\frac{3^2}{2} \sin ^{-1}\left(\frac{x}{3}\right)\right]_0^3\)

= \(4\left[\left(\frac{3}{2} \times 0+\frac{3^2}{2} \sin ^{-1}(1)\right)-0\right]=4\left(\frac{3^2}{2}\right)\left(\frac{\pi}{2}\right)=9 \pi \text { sq. units }\)

Question 3. Find the area of the region bounded by curve 4x²=y and the line y = 8x + 12. using integration.

Solution:

Given curve is 4x²= y….(1)

and given line is y = 8x + 12…..(2)

From equation (1) and (2), we get:

4x² – 8x – 12 = 0

⇒ x² – 2x – 3 = 0

⇒ (x-3) (x + 1) = 0 =3 x = 3, -1

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Are Region Bounded By The Curve And Line

From equation (1); when x = 3, y = 36 and when x = – 1 ⇒ y = 4.

So, point of intersection of the curve and line tire (3, 36) and (-1,4).

⇒ Required Area = \(\int_{-1}^3\left\{(8 x+12)-4 x^2\right\} d x=\left[\frac{8 x^2}{2}+12 x-\frac{4 x^3}{3}\right]_{-1}^3\)

= \((36+36-36)-\left(4-12+\frac{4}{3}\right)=36+\frac{20}{3}=\frac{128}{3} \text { sq. units }\)

Important Questions For CBSE Class 12 Maths Chapter 8

Question 4. Using integration, find the area of the region bounded by the curves x² + y² = 4, x =√3y, and the x-axis lying in the first quadrant.

Solution:

Given curve x² + y² = 4 is a circle with center (0, 0) and radius 2.

And line is x = √3y

Now, for the point of intersection of the line and circle, we have:

⇒ 4y² = 4 ⇒ y = ± 1

For y = 1; x = √3

So. point C is (3, 1)

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Area Bounded By The Curve And x axis Lying In First Quardant

Required area = area of OACO + Area of ABCA

= \(\int_0^{\sqrt{3}} y_{\text ({line })} d x+\int_{\sqrt{3}}^2 y_{\mid \text {circle } \mid} d x=\frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} x d x+\int_{\sqrt{3}}^2 \sqrt{4-x^2} d x\)

= \(\frac{1}{2 \sqrt{3}}\left[x^2\right]_0^{\sqrt{3}}+\left[\frac{x}{2} \sqrt{4-x^2}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right]_3^{-2}\)

= \(\frac{1}{2 \sqrt{3}}(3)+\left\{2 \sin ^{-1}(1)-\frac{\sqrt{3}}{2}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right\}=\frac{\sqrt{3}}{2}+\left(2 \times \frac{\pi}{2}\right)-\frac{\sqrt{3}}{2}-2 \times \frac{\pi}{3}=\frac{\pi}{3} \text { sq.units }\)

Application Of Integrals Important Formulas For Class 12 CBSE 

Question 5. Using the method of integration, find the area of the triangle ABC. coordinates of whose vertices are A(2. 0), B(4, 5) and C(6, 3).

Solution:

Vertices of ΔABC are A(2,0), B(4,5) and C (6,3)

Equation of line AB: y = 5/2(x – 2)

Equation of line BC: y = 9-x

Equation of line AC: y= 3/4(x-2)

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Area Of The Triangle

⇒ Required Area of ΔABC = \(\int_2^4(\text { line } \mathrm{AB}) \mathrm{dx}+\int_4^6(\text { line } \mathrm{BC}) \mathrm{dx}-\int_2^6(\text { line } \mathrm{AC}) \mathrm{dx}\)

= \(\frac{5}{2} \int_2^4(x-2) d x+\int_4^6(9-x) d x-\frac{3}{4} \int_2^6(x-2) d x\)

= \(\frac{5}{2}\left[\frac{x^2}{2}-2 x\right]_2^4+\left[9 x-\frac{x^2}{2}\right]_4^6-\frac{3}{4}\left[\frac{x^2}{2}-2 x\right]_2^6\)

= \(\frac{5}{2}[(8-8)-(2-4)]+[(54-18)-(36-8)]-\frac{3}{4}[(18-12)-(2-4)]\)

= \(\left(\frac{5}{2} \times 2\right)+8-\left(\frac{3}{4} \times 8\right)=5+8-6=7 \text { sq. units }\)

Question 6. Using the method of integration, find the area of a triangle whose vertices arc (1, 0), (2, 2), and (3, 1).

Solution:

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Area Of ThE Triangle With Vertices

Equation of line AB is y – 0 = \(\frac{(2-0)}{(2-1)}(x-1) \Rightarrow y=2(x-1)\)

Equation of line BC is y – 2 = \(\frac{(1-2)}{(3-2)}(x-2) \Rightarrow y=(-x+1)\)

Equation of line AC is y – 0 = \(\frac{(1-0)}{(3-1)}(x-1) \Rightarrow y=1/2(x-1)\)

⇒ Required Area = \(\int_1^2(\text { line } A B) d x+\int_2^3(\text { line } B C) d x-\int_1^3(\text { line } A C) d x\)

= \(\int_1^2 2(\mathrm{x}-1) \mathrm{dx}+\int_2^3(-\mathrm{x}+4) \mathrm{dx}-\int_1^3 \frac{1}{2}(\mathrm{x}-1) \mathrm{dx}\)

= \(2\left(\frac{\mathrm{x}^2}{2}-\mathrm{x}\right)_1^2+\left(\frac{-\mathrm{x}^2}{2}+4 \mathrm{x}\right)_2^3-\frac{1}{2}\left(\frac{\mathrm{x}^2}{2}-\mathrm{x}\right)_1^3\)

= \(2\left[(2-2)-\left(\frac{1}{2}-1\right)\right]+\left[\left(\frac{-9}{2}+12\right)-(-2+8)\right]-\frac{1}{2}\left[\left(\frac{9}{2}-3\right)-\left(\frac{1}{2}-1\right)\right] \)

= \(\left(2 \times \frac{1}{2}\right)+\left(\frac{-9}{2}+6\right)-\frac{1}{2}(4-2)=1+\frac{3}{2}-1=\frac{3}{2} \text { sq. units }\)

Class 12 Maths Graphical Questions On The Application Of Integrals 

Question 7. Using integration, find the region’s area in the first quadrant enclosed by the x-axis, the line y = x, and the circle x² + y² = 32.

Solution:

Given line is y = x ….(1)

and given circle is x² + y² = 32….(2)

From equations (1) and (2); we have

2x² = 32 ⇒ x = ± 4

∴ y = ± 4

Important Questions For CBSE Class 12 Maths Chapter 8 Application Of Integrals Area Of The Region In First Quadrant

Now; (4, 4) lies in 1st quadrant

⇒ Required Area  = \(\int_0^4 x d x+\int_1^{4 \sqrt{2}} \sqrt{32-x^2} d x\)

= \(\left(\frac{x^2}{2}\right)_0^4+\left[\frac{x}{2} \sqrt{32-x^2}+\frac{32}{2} \sin ^{-1}\left(\frac{x}{4 \sqrt{2}}\right)\right]_{-4}^{4 \sqrt{2}}\)

= \((8-0)+\left[\left(0+16 \times \frac{\pi}{2}\right)-\left(8+16 \times \frac{\pi}{4}\right)\right]=4 \pi \text { sq. units }\)

Leave a Comment