NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles

  • Circle: A circle is a collection of all points in a plane which are at the same
  • Centre: The fixed point from which all points in a plane are at the same constant distance is called the centre.
  • Radius: The distance between the centre and circumference of a circle is called the radius.
  • Chord: A straight line segment joining two points on a circle is called a chord of the circle.
  • Secant: A straight line which intersects a circle in two distinct points is called a secant to the circle.
  • Tangent: A straight line meeting a circle only at one point is called a tangent to the circle at that point.
  • Point Of Contact: The point where the straight line touches (or meets at only one point) the circle is called its point of contact.
  • Concentric Circles: Circles having the same centre are said to be concentric circles.

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles

NCERT Exemplar Class 10 Maths Chapter 10 Circles

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Theorem 1:

The tangent at any point of a circle is perpendicular to the radius through the point of contact.

Given: A circle with centre O and a tangent AB at a point P of the circle.

To Prove: OP \(\perp\) AB

Read and Learn More Class 10 Maths Solutions Exemplar

Circles The Tangent At Any Point Of A Circle Is Perpendicular To The Radius

Construction: Take a point Q other than P on AB. Join OQ.

Proof: Q is a point on the tangent AB, other than the point of contact P.

Q lies outside the circle.

Let OQ interest the circle at R.

Then, OR < OQ

But, OP = OR

Therefore, OP < OQ

Thus, OP is shorter than any other line segment joining O to any point of AB.

It means OP is the shortest distance among all the lines drawn from O to. the point on the tangent other than the point of contact.

Also, we know that perpendicular distance is the shortest distance So, \(\perp\)

i.e., the radius through the point of contact is perpendicular to the tangent.

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Theorem 2:

A line drawn through the end of a ratlins and perpendicular to it is a tangent to the circle.

Given: A circle with centre O in which OP is a radius and AB is a line through P such that OP \(\perp\) AB.

Circles A Line Drawn Through The End Of A Radius And Perpendicular

To Prove: AB is a tangent to the circle at the point P.

Construction: Take a point Q different from P, on AB. Join OQ.

Proof: We know that the perpendicular distance from a point to a line is the shortest distance between them.

  • OP \(\perp\) AB
  • OP is the shortest distance from O to AB.
  • OP < OQ
  • Q lies outside the circle.
  • Thus, every point on AB other than P, lies outside the circle.
  • AB meets the circle at point P only. Hence, AB is the tangent to the circle at the point P.

An Important Result of the Above Theorem

If two circles touch internally or externally, the point of contact lies in a straight line through their centres.

Given: Two circles with centre O and O’ which touch each other at P.

To Prove : P lies on the straight line 00′ i.e., the line joining the centres.

Circles Touch Externally And Internally

Construction: Join OP, and O’P and draw a common tangent PT to the two circles at point P.

Proof: When Circles Touch Externally :

  • ∠1 = 90° …(1) (radius through the point of contact is perpendicular to the tangent)
  • ∠2 = 90° (same reason) …(2)
  • ∠1 + ∠2 = 90° + 90° [from (1) and (2)]
  • ∠l+∠2=180°
  • OPO’ is a straight line. (L.P.A.) …(3)
  • When Circles Touch Internally :
  • ∠OPT = ∠O’PT = 90° (radius through the point of contact is perpendicular to the tangent)
  • O’OP is a straight line. (O’P, OP are both 1 to PT at the same point P and only one

∴ \(\perp\) can be drawn to a line through one point on it) …(4) From both (3) and (4), we conclude that P lies on the straight line OO’ i.e., P lies on the straight line joining the centre of the circles.

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Theorem 3:

The lengths of tangents drawn from an external point to a circle are equal.

Given: Two tangents AP and AQ are drawn from point A to a circle with centre O.

Circles The Lengths Of Tangents Drawn From An External Point To A Circle

To Prove: AP = AQ

Construction: Join OP, OQ and OA.

Proof: AP is a tangent at P and OP is the radius through P.

OP\(\perp\) AP

Similarly, OQ \(\perp\) AQ

In the right \(\triangle\) OPA and \(\triangle\) OQA

OP = OQ

OA = OA

OPA = ∠OQA

⇒ \(\triangle\) OPA = \(\triangle\) OQA

Hence, AP = AQ

Corollary : (A) If two tangents are drawn from an external point then

  • They subtend equal angles at the centre, and
  •  they are equally inclined to the line segment joining the centre to that point, (or, tangents are equally inclined at the centre).

Given: A circle with centre O and a point A outside it. Also, AP and AQ are the two tangents to the circle.

To Prove : \(\angle\)AOP = \(\angle\) AOQ and \(\angle\) OAP = \(\angle\) OAQ

Circles A Circle With Centre O And A Point A

Proof : In \(\triangle\)AOP and \(\triangle\)AOQ, we have

AP = AQ (tangents from an external point)

OP = OQ (radii of the same circle)

OA = OA (common)

⇒ \(\triangle\)AOP = \(\triangle\)AOQ (by SSS congruence)

Hence, \(\angle\)AOP = \(\angle\)AOQ and \(\angle\)OAP = \(\angle\)OAQ

(2) Prove that the tangents drawn at the endpoints of a chord of a circle make equal angles with the chord.

Given: Let AB be a chord of the given circle. PA and PB are the tangents at endpoints A and B.

To Prove : \(\angle\)5 = \(\angle\)6

Proof: Since OA and OB are the radii of a circle.

Circles The Tangent Drawn At The End Points Of A Chord Of A Circle

NCERT Exemplar Solutions for Circles Class 10

⇒ \(\angle\)1 = \(\angle\)2 …(1 )(each 90°, as radius through point of contact is 1 to the tangent)

Also in \(\triangle\)OAB,

Since OA = OB

⇒ \(\angle\)3 = \(\angle\)4 (angles opposite to equal sides are equal)

Subtracting equation (2) from equation (1), we get

⇒ \(\angle\)1 – \(\angle\)3 = \(\angle\)2 – \(\angle\)4

⇒ \(\angle\)5 = \(\angle\)6

Hence, tangents drawn at the endpoints of a chord of a circle make equal angles with the chord.

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Solved Examples

Example 1. Find the length of tangent drawn to a circle of radius 6 cm, from a point at a distance of 10 cm from the centre.

Solution:

Given that

A circle of radius 6 cm, from a point at a distance of 10 cm from the centre.

Since the tangent is perpendicular to the radius through the point of contact.

Circles The Length Of Tangent Drawn To Circle Of Radius

  • \(\angle O T P=90^{\circ}\)
  • In the right triangle OTP, we have
  • \(O P^2 =O T^2+P T^2\)
  • \(10^2 =6^2+P T^2\)
  • \(P T^2 =100-36=64\)
  • P T =8 cm
  • Hence, the length of the tangent is 8 cm.

The length of tangent is 8 cm.

Question 2. AP is tangent to circle O at point P. What is the length of OP?

Solution:

Given that

AP is tangent to circle O at point P.

Let the radius of the given circle be r.

Circles Radius Through Point Of Contact Is Perpendicular To The Tangent

OP = OB = r

OA = 2 + r, OP = r, AP =4

⇒ \(\angle OPA\) = 90° (radius through the point of contact is perpendicular to the tangent)

In right \(\triangle O P A\),

⇒ \(O A^2 =O P^2+A P^2\)

⇒ \((2+r)^2 =r^2+(4)^2\)

⇒ \(4+r^2+4 r =r^2+16\)

⇒ \(4 r =12 \quad \Rightarrow \quad r=3\)

O P = 3 cm.

The length of OP = 3 cm.

Example 3. If the angle between two tangents drawn from an external point P to a circle of radius V and centre O, is 60°, then find the length of OP.

Solution:

Given

If the angle between two tangents drawn from an external point P to a circle of radius V and centre O, is 60°,

PA and PB are two tangents from an external point P such that

Circles The Angle Between Two Tangents Drawn From An External Point

⇒ \(\angle\)APB = 60°

⇒ \(\angle\)OPA = \(\angle\)OPB = 30° (tangents are equally inclined at the centre)

Also, \(\angle\)OAP = 90° (radius through the point of contact is perpendicular to the tangent)

Now in right \(\triangle\)OAP,

⇒ \(\sin 30^{\circ} =\frac{O A}{O P}\)

⇒ \(\frac{1}{2} =\frac{a}{O P} \quad \Rightarrow \quad O P\)=2 a units

The length of OP =2 a units

Example 4. In the adjoining figure, PQ is a chord of a circle and is the tangent atP such that \(\angle\)QPT = 60°. Find \(\angle\)PRQ.

Solution:

Given that

In the adjoining figure, PQ is a chord of a circle and is the tangent atP such that \(\angle\)QPT = 60°.

Circles In The Adjoining The Chord Of A Circle And Tangent

Join OP and OQ. Take any point S on the circumference in the alternate segment. Join SP and SQ.

Since OP \(\perp\) PT (radius through the point of contact is 1 to the tangent

⇒ \(\angle 2+\angle 1=90^{\circ}\)

⇒ \(\angle 2+60^{\circ}=90^{\circ}\)

⇒ \(\angle 2=90^{\circ}-60^{\circ}=30^{\circ}\) (given)

But O P=O Q (each radii)

⇒ \(\angle 2=\angle 3\) (angles opposite to equal sides are equal)

But O P=O Q

⇒ \(\angle 2=\angle 3\) (angles opposite to equal sides are equal)

Now in \(\triangle P O Q\),

⇒ \(\angle 2+\angle 3+\angle 4 =180^{\circ}\)

⇒ \(30^{\circ}+30^{\circ}+\angle 4 =180^{\circ}\)

⇒ \(\angle 4 =120^{\circ}\)

⇒ \(\angle 5 =\frac{1}{2} \times \angle 4\) (angle sum property) [from (1) and (2)]

(The degree measure of an area is twice the angle subtended by it in an alternate segment)

⇒ \(\angle 5=\frac{1}{2} \times 120^{\circ}\)

⇒ \(\angle 5 =60^{\circ}\)

∴ Also,\(\angle 5+\angle 6 =180^{\circ}\)

⇒ \(60^{\circ}+\angle 6 =180^{\circ}\)

∴ \(\angle 6 =\angle P R Q=120^{\circ}\)

Example 5. In the given figure two circles touch each other at point C. Prove that the common tangent to the circle at C bisects the common tangent at P and Q.

Solution:

In the given figure, PR and CR are both tangents drawn to c the same circle from an external point R

Circles Two Circles Touch Each Other At A Point

PR = CR …(1)

Also, QR and CR are both tangents drawn to the same circle from an external point R.

QR = CR -(2)

From ( 1 ) and (2) we get

PR = QR

R is the mid-point of PQ

i.e., the common tangent at C bisects the common tangents at P and Q

Example 6. Two circles of unequal radii neither touch nor intersect each other. Are the common tangents AB and CD always equal? If no, then give an explanation of it and if your answer is yes, then prove it.

Circles Two Circles OF Unequal Radii Neither Touch Nor Intersect Each Other

Solution:

Let the two tangents AB and CD on producing meet at P.

Since PA and PC are tangents from an external point P to the circle with centre O

PA=PC

Also, PB and PD are tangents from an external point P to the circle with centre O’.

Circles The Tangents From A External Point To The Circle With Centre

PB = PD …(2)

Subtracting (2) from (I), we get

PA – PB = PC- PD

AB = CD

So, the direct common tangents are of equal length

Example 7. In the adjoining figure, common tangents AB and CD to two circles intersect at P. Prove that AB = CD.

Solution:

Given that

In the adjoining figure, common tangents AB and CD to two circles intersect at P.

Circles In Adjoining Common Tangents Of Two Circles Intersect

  • Since PA and PC are two tangents to a circle with centre O from an external point P.
  • PA =PC
  • Also, since PB and PD are two tangents to a circle with centre O’ from an external point P.
  • PB = PD
  • Adding (2) and ( 1 ), we get
  • PA + PB = PC + PD
  • AB = CD (AB and CD are two straight lines)
  • Hence Proved.

Example 8. In the given diagram, PQ and RS arc common tangents to the two circles with centres C and D. Find the length of PQ and hence the area of trapezium RSDC.

Solution:

Given

In the given diagram, PQ and RS arc common tangents to the two circles with centres C and D.

Circles The Common Tangents To The Two Circles With Centers

Draw CM//PS so that DCMSP becomes a rectangle.

Now, we have CR = 2 cm, DS = 7cm and CD = 13 cm

DM = DS- MS

= DS- CR

= 7-2 = 5 cm

In right ADMC, by Pythagoras theorem,

Circle The Length Of A Common Tangents To Two Circles Are Always Same

⇒ \(C M^2 =C D^2-D M^2\)

=\((13)^2-(5)^2=(12)^2\)

RS = 12 cm (opposite sides of the rectangle are equal)

PQ = 12 cm (length of common tangents to two circles are always same)

Now, ar(Trapezium RSDC)

= \(\frac{1}{2} \times\) h sum of parallel sides)

= \(\frac{1}{2} \times C M(C R+D S)\)

= \(\frac{1}{2} \times 12(2+7)=54 \mathrm{~cm}^2\)

The length of PQ is 12 cm.

The area of trapezium RSDC is 54 cm².

Example 9. AB is the diameter of a circle with centre O. AH and BK are perpendiculars from A and B to the tangent at a point P on the circle. Prove that AD + BK = AB.

Solution:

Given

AB is the diameter of a circle with centre O. AH and BK are perpendiculars from A and B to the tangent at a point P on the circle.

Let AH = x, BK=y and BM = z

Circles AB Is A Diameter Of A Circle With Centre

⇒ \(\triangle M B K \sim \triangle M A H\) (AA corollary)

⇒ \(\frac{B K}{A H}=\frac{B M}{A M} \quad \Rightarrow \quad \frac{y}{x}=\frac{z}{2 r+z}\)

⇒ \(2 r y+y z=x z \quad \Rightarrow \quad z(x-y)=2 r y\)

z=\(\frac{2 r y}{x-y}\)

Similarly, \(\triangle M B K \sim \triangle M O P\)

⇒ \(\frac{B K}{O P}=\frac{B M}{O M} \quad \Rightarrow \quad \frac{y}{r}=\frac{z}{z+r}\)

y z+y r=z r

z(r-y)=y r

z=\(\frac{y r}{r-y}\)

From (1) and (2), we get

⇒ \(\frac{2 y}{x-y} =\frac{y r}{r-y} \quad \Rightarrow \quad \frac{2}{x-y}=\frac{1}{r-y}\)

2 r-2 y =x-y

x+y 2 r

A H+B K =A B

Example 10. In the given figure, if AB =AC, prove that BE = EC.

Solution:

Given

In the given figure, if AB =AC

We know that lengths of tangents from an external point are equal.

Circles Length Of Tangents From An External Point Are Equal

AD =AF  → Equation 1

DB=BE    → Equation 2

EC =FC  →  Equation 3

Now, it is given that

AB=AC

AD + DB =AF + FC

AD + DB = AB + E C From 1 And 3

D B = E C

B E = E C [From (2), DB = BE]

∴ Hence proved

Example 11. In the given figure ABC is a right-angled triangle with AB = 6 K cm, and BC = 8 cm. A circle with a centre O has been inscribed inside the triangle. Find the radius of the circle.

Solution:

Given

In the given figure ABC is a right-angled triangle with AB = 6 K cm, and BC = 8 cm. A circle with a centre O has been inscribed inside the triangle.

Circles A Circle With Centre Has Been Inscribed Inside The Triangle

Let x be the radius of the circle. In the right triangle ABC

⇒ \(A C^2 =A B^2+B C^2\) (by Pythagoras Th.)

⇒ \(A C^2 =6^2+8^2\)

⇒ \(A C^2\) =36+64

⇒ \(A C^2\) =100

A C =10

Now in quadrilateral OPBR

⇒ \(\angle B =\angle P=\angle R=90^{\circ}\) each

⇒ \(\angle R O P =90^{\circ}\)sum of all angles of a quadrilateral is 360°) (each radii)

and also OP = OR (each radii)

Hence, OPBR is a square with each side x cm.

Therefore, CR = (8 -x) and PA = (6 -x)

BP = RB = x cm

Since the tangents from an external point to a circle are equal in length

AQ = AP = (6-x) and CQ = CR = (8 -x)

Now, AC = AQ + CQ

10 = 6 -x + 8 -x

10 = 14 – 2

2x = 4 = 2 cm

The radius of the circle = 2 cm

Chapter 10 Circles Class 10 Maths NCERT Exemplar

Example 12. A circle is touching the side BC of a \(\triangle\) ABC at the point and touching/IB and AC produced at Q and li respectively. Prove that AQ = \(\frac{1}{2}\) (perimeter of \(\triangle\) ABC).

Solution:

Given : \(\triangle ABC\) and a circle which touches BC, AB and AC in P, Q and R respectively.

Proof: Since the length of the two tangents drawn from an external
point to a circle are is equal, therefore,

Circles A Circle Is Touching The Side At A Point

AQ = AR

BQ = BP

CP = CR

Now, perimeter of \(\triangle ABC\) = AB + BC + AC

= AB +BP + PC +AC

= AB + BQ + CR + AC [from (2) and (3)]

= AQ+AR = 2AQ [from (1)]

Perimeter of \(\triangle ABC\) = \(\frac{1}{2} \times \text { (perimeter of } \triangle A B C)\)

Example 13. In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. IfPA = 12 cm, QC = QD = 3 cm, then find PC + PD.

Solution:

Given

In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. IfPA = 12 cm, QC = QD = 3 cm

Circle The Length Of The Two Tangents Drawn From An External Point To A Circle

Since the lengths of the two tangents drawn from an external point to a circle are equal,

PA = PB  → Equation (l)

CA = CQ  → Equation (2)

DB = DQ  →  Equation (3)

Now, PA = 12

PC + CA= 12 (given)

PC + CQ = 12  From 2

PC + 3 = 12 ⇒ PC= 9 cm  →  Equation 4

PB=PA = 12

PD +DB= 12

PD +DQ= 12

PD + 3 = 12

PD = 9 cm  → Equation 5

PC + PD = (9 + 9) cm = 18 cm [From 4 and 5]

PC + PD = 18 cm

Example 14. O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects the circle at E. If AB is the tangent to the circle at E, find the length AB.

Circle O Is The Centre Of The Circle Of Radius

Solution:

Given

O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects the circle at E. If AB is the tangent to the circle at E

Since, \(\angle O P T=90^{\circ}\) (radius through point of contact is \(\perp\) to the tangent)

In right \(\triangle O P T\),

⇒ \(OP^2+P T^2=O T^2\)

⇒ \(P T^2=O T^2-O P^2\)

⇒ \(P T^2=(13)^2-(5)^2=(12)^2\)

⇒ \(P T=12 \mathrm{~cm}\)

Let A P=x cm

At E=A P=x (lengths of tangents from an external point are equal)

A T=T P-A P=12-x

E T=O T-O E=13-5=8 cm

⇒ \(\angle A E T=90^{\circ}\)

Now; since \(\angle A E O=90^{\circ}\)(radius through point of contact is \(\perp\) to the tangent)

In right \(\triangle A E T\), by Pythagoras theorem,

⇒ \(A E^2+E T^2=A T^2\)

⇒ \(x^2+(8)^2=(12-x)^2\)

⇒ \(x^2+64=144+x^2-24 x \)

⇒ \(24 x=144-64=80\)

x=\(\frac{80}{24}=\frac{10}{3}\)

Similarly, B E=\(\frac{10}{3} \mathrm{~cm}\)

⇒ \(A B=A E+B E=\left(\frac{10}{3}+\frac{10}{3}\right) \mathrm{cm}=\frac{20}{3} \mathrm{~cm}\)

A B=\(\frac{20}{3} \mathrm{~cm}\)

The length AB is  \(\frac{20}{3} \mathrm{~cm}\)

Example 15. In the given figure, T is tangent to the circle with centre O such that O T=4 cm and \(\angle O T A=30^{\circ}\). Find the length of segment AT.

Circle A Tangent To The Circle With The Centre

Solution:

Given

In the given figure, T is tangent to the circle with centre O such that O T=4 cm and \(\angle O T A=30^{\circ}\).

In right \(\triangle O A T\),

⇒ \(\cos 30^{\circ} =\frac{A T}{O T}\)

∴ \(\frac{\sqrt{3}}{2} =\frac{A T}{4} \quad A T=2 \sqrt{3} \mathrm{~cm}\)

The length of segment AT is 2√3 cm.

Example 16. In the given figure, OP is equal to the diameter of the circle. Prove that \(\triangle ABP\) is an equilateral triangle.

Solution: 

Given

In the given figure, OP is equal to the diameter of the circle.

Circles Op Is Equal To The Diameter Of The Circle Of An Equilateral Triangle

Let, \(\angle O P A=\angle O P B=\theta\)( tangents are equally inclined at the centre) and the radius of the circle be r.

Since, \(\angle 1=90^{\circ}\) (radius through point of contact is \(\perp\) to the tangent)

In right \(\triangle O A P\),

⇒ \(\sin \theta =\frac{O A}{O P}=\frac{r}{2 r}=\frac{1}{2}=\sin 30^{\circ}\)

⇒ \(\theta \Rightarrow \quad 30^{\circ} \quad \Rightarrow A P B=2 \theta=2 \times 30^{\circ}=60^{\circ}\)

Now, since PA = PB (length of tangents from an external point are equal)

⇒ \(\angle 2=\angle 3\) (angles opposite to equal sides are equal)

In \(\triangle M P B\).

⇒ \(\angle 2+\angle 3+\angle A P B=180^{\circ}\)

⇒ \(\angle 2+\angle 2+60^{\circ}=180^{\circ}\)

⇒ \(\angle 2=\angle 3=60^{\circ}\)

⇒ \(\angle 2+\angle 3+\angle A P B =180^{\circ}\) (angle sum property)

⇒ \(\angle 2+\angle 2+60^{\circ} =180^{\circ}\) [from (1) and (2)]

2 \(\angle 2 =120^{\circ} \quad \Rightarrow \quad \angle 2=60^{\circ}\)

⇒ \(\angle 2=\angle 3=60^{\circ}\)

So, all the angles of \(\triangle A P B are 60^{\circ}\).

∴ \(\triangle A P B\) is an equilateral triangle.

Example 17. If from an external point B of a circle with centre O, two tangents BC and BD are drawn such that \(\angle D B C=120^{\circ}\), prove that B C+B D=B O.

Solution:

Given

If from an external point B of a circle with centre O, two tangents BC and BD are drawn such that \(\angle D B C=120^{\circ}\),

⇒ \(\angle 1+\angle 2 =120^{\circ}\)

But \(\angle 1 =\angle 2\)

Circle An External Point B Of A Circle With Centre O

⇒ \(\angle 1+\angle 1 =120^{\circ}\)

2 \(\angle 1 =120^{\circ}\)

⇒ \(\angle 1 =60^{\circ}\)

Also, \(\angle O C B =90^{\circ}\) (radius through point of contact is \(\perp\) to the tangent)

Now, in right \(\triangle O C B\),

⇒ \(\cos 60^{\circ}=\frac{B C}{O B} \quad \Rightarrow \quad \frac{1}{2}=\frac{B C}{O B}\)

O B=B C+B C

O B=2 B C \(\quad \Rightarrow \quad O B=B C+B C\)

O B=B C+B D(length of tangents from an external point are equal)

∴ Hence Proved.

Example 18. In the adjoining figure, AB is a chord of length 9.6 cm of a circle with centre O and radius 6 cm. The tangents at A and B intersect at P. Find the length of PA.

Solution:

Given

In the adjoining figure, AB is a chord of length 9.6 cm of a circle with centre O and radius 6 cm. The tangents at A and B intersect at P.

Join OP, OA and OB.

Circle In The Adjoining Figure, AB Is a Chord Of Length

Let PA = x cm and PM = y cm

P A =P B (length of tangents from an external point are equal)

P M =P M (common)

⇒ \(\angle 1 =\angle 2\) (tangents are equally inclined at the centre)

⇒ \(\triangle A M P \cong \triangle B M P\) (SAS congruency)

Circle The Length Of A PA With A Centre O

A M=M B=\(\frac{9.6}{2}=4.8 \mathrm{~cm}\)

and \(\angle P M A=\angle P M B\)

But \(\angle P M A+\angle P M B=180^{\circ}\)

⇒ \(\angle P M A=\angle P M B=90^{\circ}\)

Now, in right \(\triangle A M P\),

⇒ \(x^2=y^2+(4.8)^2\) (by Pythagoras theorem)

Also, in right \(x^2=y^2+(4.8)^2\)\triangle A M O\(x^2=y^2+(4.8)^2\),

⇒ \((4.8)^2+O M^2 =(6)^2\)

⇒ \(O M^2 =36-23.04=12.96\)

⇒ \(O M =\sqrt{12.96}=3.6 \mathrm{~cm}\)

Now, \(\angle O A P=90^{\circ}\) (radius through point of contact is \perp to the tangent)

In right \(\triangle M O P\),

⇒ \(O P^2 =O A^2+A P^2 \Rightarrow(y+3.6)^2=36+x^2\)

⇒ \(y^2+12.96+7.2 y =36+y^2+(4.8)^2\)

⇒ \(7.2 y =36+23.04-12.96 \quad \Rightarrow \quad 7.2 y=46.08 \)

y =\(\frac{46.08}{7.2}=6.4 \mathrm{~cm}\)

Put this value of y in equation (1),

⇒ \(x^2 =(6.4)^2+(4.8)^2=40.96+23.04=64\)

x = 8 cm

Hence, x=8 cm and y=6.4 cm

Example 19. The radii of two concentric circles are 1 3 cm and 8 cm. AB is the diameter of the bigger circle. BD is a tangent to the smaller circle touching it at D. Find the length AD.

Solution:

Given

The radii of two concentric circles are 1 3 cm and 8 cm. AB is the diameter of the bigger circle. BD is a tangent to the smaller circle touching it at D.

Produce BD to E which cuts the circle at E. Join AE and OD.

Since AB is the diameter of the bigger circle.

⇒  \(\angle A E B=90^{\circ}\) (angle in a semicircle is right angle)

Also, \(\angle O D B=90^{\circ}\)(radius through point of contact is \(\perp\) to the tangent)

Circle The Radii Of Two concentric Circles

Now, in \(\triangle B O D\) and \(\triangle B A E\)

⇒ \(\angle B =\angle B\) (common)

⇒ \(\angle O D B =\angle A E B\) (each \(90^{\circ}\) )

⇒ \(\Delta B O D =\triangle B A E\)

⇒ \(\frac{O D}{A E} =\frac{O B}{A B}\)(corresponding sides of similar triangles are proportional)

⇒ \(\frac{8}{A E}=\frac{r}{2 r} \quad \Rightarrow A E=16 \mathrm{~cm}\)

Since, \(O D \perp E B\)

D E=D B (\(\perp\) drawn from the centre to the chord bisects the chord)

In right \(\triangle O D B\),

⇒ \(D B^2 =O B^2-O D^2=(13)^2-(8)^2=169-64=105\)

D B =\(\sqrt{105} \mathrm{~cm}=E D\)

Now, in right \(\triangle A E D\), by Pythagoras theorem

⇒ \(A D^2 =A E^2+E D^2\)

⇒ \(A D^2 =(16)^2+105=256+105=361\)

∴ \(A D =\sqrt{361}\) i.e.. 19 cm

Hence, A D =19 cm.

The length AD =19 cm.

Class 10 Circles Questions with Solutions

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles  Exercise 10.1

Question 1. How many tangents can a circle have?

Solution :

Infinitely many tangents can be drawn on a circle.

Question 2. Fill in the blanks :

  1. A tangent to a circle intersects it in point (s).
  2. A line intersecting a circle in two points is called a
  3. A circle can have parallel tangents at the most.
  4. The common point of a tangent to a circle and the circle is called

Answer :

  1. one
  2. secant
  3. two
  4.  point of contact

Question 3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm, Length PQ is :

Circle A Tangent At A Point P Of A Circle Of Radius

  • 12 cm
  • 13 cm
  • 8.5 cm
  • \(\sqrt{119} \mathrm{~cm}\)

Solution : 4. \(\sqrt{119} \mathrm{~cm}\)

Here OP = 5 cm,

OQ = 12 cm In \(\triangle\)POQ

In \(\triangle P O Q \)

⇒ \(P Q^2 =O Q^2-O P^2\)

=\(12^2-5^2=119\)

P Q =\(\sqrt{119}\) cm

Question 4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Solution:

  1. Let the centre of the circle be O. The line AB lies outside the circle. Draw the perpendicular OM from O to AB.
  2. The perpendicular OM intersects the circle at P. Draw a line EPF from P parallel to AB.
  3. EF is the required tangent of the circle.
  4. Draw a line CD parallel to AB which intersects the circle at two points. It is the required secant of the circle.

Circle A Circle And Two Lines Parallel To A Given Line

NCERT Class 10 Maths Chapter 10 Extra Questions

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Exercise 10.2

Question 1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is :

  1. 7 cm
  2. 12 cm
  3. 15 cm
  4. 24.5 cm

Answer: 1.

Here, PQ = 24 cm and OQ = 25 cm

In \(\triangle O P Q\)

⇒ \(O P^2=O Q^2-P Q^2\)(from Pythagoras theorem)

Circle The Radius Of Circle From A Point

= \(25^2-24^2=625-576=49\)

OP = 7 cm

Radius of circle = 7 cm

Question 2. In the figure, if TP and TQ arc the Uvo tangents to a circle with centre O so that ZPOQ = 110°, then Z PTQ is equal to :

  1. 60°
  2. 70°
  3. 80°
  4. 90°

Answer: 2.

Here TP and TQ are the tangents to the circle.

Circle The Two Tangents To A Circle With The Centre

⇒ \(\angle\)OPT = \(\angle\)OQT = 90°

In □ OPTQ,

⇒ \(\angle\)OPT + \(\angle\)PTQ + \(\angle\)OQT + \(\angle\)POQ = 360°

90° + ZPTQ + 90° + 110° = 360°

⇒ \(\angle\)PTQ = 360° -290°

∴ \(\angle\)PTQ = 70°

Question 3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then ∠POA is equal to :

  1. 50°
  2. 60°
  3. 70°
  4. 80°

Answer: 1. 50°

PA and PB are two tangents of the circle.

⇒ \(\angle\)PAO = \(\angle\)PBO = 90°

Circle The Tangents From A Point Of Circle With The Centre

Given : \(\angle\)APB =80°

Now, in □PAOB,

⇒ \(\angle\)AOB + \(\angle\)PAO + \(\angle\)APB + \(\angle\)PBO = 360°

⇒ \(\angle\)AOB + 90° + 80° + 90° = 360°

⇒ \(\angle\)AOB = 360° – 260° = 100°

Now, PO bisects \(\angle\)AOB.

⇒ \(\angle\)POA = – \(\angle\)AOB = – x 100° = 50°

Question 4. Prove that the tangents drawn at the ends of the diameter of a circle are parallel.

Solution :

Let AB be the diameter of a circle with centre O. PA and PB are the tangents to the circle at A points A and B respectively.

Circle The Tangents Drawn At The Ends Of A Diameter Of A Circle

Now Z\(\angle\)PAB = 90°

and \(\angle\)QBA = 90°

\(\angle\)PAB +QBA = 90° + 90° = 180°

PA || QB Hence Proved.

Question 5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Solution :

Given: A circle with centre O a tangent AQB and a perpendicular PQ is drawn from the point of contact Q to AB.

To Prove: The perpendicular PQ passes through the centre of the circle.

Proof: AQ is the tangent of the circle at point Q.

AQ will be the perpendicular to the radius of the circle.

PQ \(\perp\) AQ

The centre of the circle will lie on the line PQ.

Perpendicular PQ passes through the centre of the circle.

Hence Proved.

Question 6. The length of a tangent from point A at a distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Solution :

Given

The length of a tangent from point A at a distance 5 cm from the centre of the circle is 4 cm.

Let O be the centre of the circle and PQ is a tangent to the circle from point P.

Given that, PQ = 4 cm and OP = 5 cm

Circle The Length Of A Tangent From A Point At A Distance

Now,\(\angle O Q P=90^{\circ}\)

In \(\triangle O Q P\) ,

⇒  \(O Q^2=O P^2-P Q^2\)

=\(5^2-4^2\)

= 25-16 = 9

OQ = 3 cm

Radius of circle = 3 cm

Question 7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Solution :

Given

Two concentric circles are of radii 5 cm and 3 cm.

Here, we draw two circles C1 and C2 with radii = 3 cm and r2 = 5 cm c2 respectively.

Circles The Length Of The Chord Of The Larger Circle Touches The Smaller Circle

Now, we draw a chord AB which touches the circle C1 at D.

O is the centre of concentric circles.

Now we draw the perpendicular from O to AB which bisects AB at D.

i.e., AD = BD

In right \(\triangle O B D\),

⇒ \(O B^2=O D^2+D B^2\) (from Pythagoras theorem)

⇒ \(5^2 =3^2+D B^2\)

⇒ \(D B^2\) =25-9=16

DB = 4 cm

Length of chord = AB = 2BD

= 2 x 4 = 8 cm

Question 8. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD=AD + BC.

Circle An Quadrilateral ABCD Is Drawn To The Circumscribe A Circle

Solution :

Given

A quadrilateral ABCD is drawn to circumscribe a circle.

The sides of quadrilateral ABCD touch the circle at P, Q, R and S as shown in the figure. We know that the tangents drawn from an external point to the circle are equal.

AP = AS, BP = BQ,

CR = CQ, DR = DS

On adding, AP + BP + CR + DR

= AS + BQ + CQ + DS

⇒ AB + CD = (AS + DS) + (BQ + CQ)

⇒ AB + CD = AD + BC

Hence Proved.

Question 9. In the figure, XY and X’ Y’ are two parallel tangents to a circle with centre O and another tangent AB with the point of contact C intersecting XY at A and X’ Y’ at B. Prove that \(\angle\)AOB = 90°.

Circle Two Parallel Tangents To A Circle With Centre O And Another Tangent

Solution :

Given

In the figure, XY and X’ Y’ are two parallel tangents to a circle with centre O and another tangent AB with the point of contact C intersecting XY at A and X’ Y’ at B.

The tangents from an external point to a circle are equal.

AP = AC

In \(\triangle A P O\) and \(\triangle A C O\),

AP = AC

AO = AO (common)

OP = OC (radii of a circle)

From S.S.S. congruency,

⇒ \(\triangle A P O \cong \triangle A C O\)

⇒ \(\angle P A O=\angle O A C\)

⇒ \(\angle P A C=2=\angle C A O\)

Similarly, we can prove that

⇒ \(\angle C B O =\angle O B Q\)

⇒ \(\angle C B Q =2 \angle C B O\)

⇒ \(Y \| X^{\prime} Y^{\prime}\)

⇒ \(\angle P A C+\angle Q B C=180^{\circ}\)

(sum of interior angles of the same side of a transversal is \(180^{\circ}\) )

2. \(\angle C A O+2 \angle C B O =180^{\circ}\)

⇒ \(\angle C A O+\angle C B O =90^{\circ}\)

In \(\triangle A O B\),

⇒  \(C A O+\angle C B O+\angle A O B=180^{\circ}\)

⇒ \(\angle C A O+\angle C B O=180^{\circ}-\angle A O B\) From equations (1) and (2)

⇒ \(180^{\circ}-\angle A O B=90^{\circ}\)

∴ \(\angle A O B=90^{\circ}\) Hence Proved.

Question 10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtends ey the line segment joining the points of contact at the centre.

Solution :

PA and PB are the tangents of the circle.

\(\angle O A P=\angle O B P=90^{\circ}\)

In O A P B

⇒  \(\Rightarrow \quad 90^{\circ}+\angle A P B+90^{\circ}+\angle A O B=360^{\circ}\)

⇒ \(\angle A P B+\angle A O B=180^{\circ}\)

⇒ \(\angle A P B\) and \(\angle A O B\) are supplementary.

Hence Proved.

Question 11. Prove that the parallelogram circumscribing a circle is a rhombus.

Circle The Parallelogram Circumscribing A Circle

Solution :

Let a parallelogram ABCD is given. Let the parallelogram touch the circle at points, P, Q, R and S.

AP and AS are the tangents drawn from an -external point A to the circle.

AP = AS …(1)

Similarly, BP = BQ _ (2)

CR = CQ (3)

DR = DS (4)

Adding equations (1), (2), (3) and (4),

AP + BP + CR+DR = AS + BQ + CQ + DS

(AP + BP) + (CR + DR)

= (AS+ DS) + (BQ + CQ)

AB + CD = AD+BC

AB + AB = AD + AD {CD = AB, BC = AD, opposite sides of a parallelogram)

2 AB = 2 AD

AB = AD

So, ABCD is a rhombus. (adjacent sides of a parallelogram are equal)

Hence Proved.

Question 12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC.

Circle A Triangle ABC Is Drawn To The Circumscribe A Circle Of Radius

Solution :

Given

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively.

Given that: CD = 6 cm,

BD = 8 cm and radius = 4 cm

Join OC, OA and OB.

Circle The Tangents Drawn From An External Point To A Circle

We know that the tangents drawn from an external point to a circle are equal.

CD = CF = 6 cm and BD = BE = 8 cm

Let AF = AE = x cm c

In \(\triangle\)OCB,

area of triangle \(A_1 =\frac{1}{2} \times \text { base } \times \text { height }\)

= \(\frac{1}{2} \times C B \times O D\)

= \(\frac{1}{2} \times 14 \times 4=28 \mathrm{~cm}^2\)

In \(\triangle O C A\),

area of triangle

⇒ \(A_2 =\frac{1}{2} \times A C \times O F \)

=\(\frac{1}{2}(6+x) \times 4\)

=12+2 x

In \(\triangle O B A\).

area of triangle

⇒ \(A_3 =\frac{1}{2} \times A B \times O E\)

=\(\frac{1}{2}(8+x) \times 4\)

=16+2 x

Now, semiperimeter of triangle ABC,

s =\(\frac{1}{2}(A B+B C+C A)\)

s =\(\frac{1}{2}(x+6+14+8+x)\)

=14+x

Now, area of \(\triangle A B C\)

=\(A_1+A_2+A_3\)

=28+(12+2 x)+(16+2 x)

=56+4 x

From Heron’s formula,

Area of \(\triangle A B C\)

= \(\sqrt{s(s-a)(s-b)(s-c)}\)

= \(\sqrt{(14+x)(14+x-14)(14+x-x-6)} \quad(14+x-x-8)\)

= \(\sqrt{(14+x)(x)(8)(6)}\)

= \(\sqrt{(14+x) 48 x}\)

From equations (1) and (2),

⇒  \(\sqrt{(14+x) 48 x}=56+4 x\)

Squaring both sides,

⇒ \((14+x) 48 x =4^2(14+x)^2\)

3 x =14+x

⇒ \(2 x=14-\Rightarrow \quad x\) =7

A C=6+x=6+7 =13 cm

A B=8+x=8+7 =15 cm

Question 13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution :

We know that the tangents drawn R from an external point to a circle subtend equal angles at the centre.

⇒ \(\angle 1=\angle 2\) ,

⇒ \(\angle 3=\angle 4\) ,

⇒ \(\angle 5=\angle 6\)

and \(\angle 7=\angle 8\)

Circles The Opposite Sides Of A Quadrilateral Circumscribing A Circle

Now, \(\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8 =360^{\circ}\)

⇒ \(2 \angle 2+2 \angle 3+2 \angle 6+2 \angle 7 =360^{\circ} \)

⇒ \((\angle 2+\angle 3)+(\angle 6+\angle 7) =180^{\circ}\)

⇒ \(\angle A O B+\angle C O D =180^{\circ}\)

Similarly, \(\angle B O C+\angle A O D =180^{\circ}\)

Hence Proved.

NCERT Exemplar Solutions For Class 10 Maths Chapter 10 Circles Multiple Choice Questions

Question 1. If the angle between two radii of a circle is 1 10° then the angle between the tangents drawn at the ends of these radii is :

  1. 110°
  2. 100°
  3. 90°
  4. 70°

Answer: 4. 70°

Question 2. If two tangents PA and PB drawn from point P are of equal length 4 cm, then the radius of the die circle is :

Circle The Two Tangents Are Drawn From A Point Are Equal Length

  1. 1 cm
  2. 2 cm
  3. 4 cm
  4. 3 cm

Answer: 3. 4 cm

Question 3. In the adjoining figure, PA and PB are tangents to a circle with centre 0 such that \(angle\)APB = 40°. \(angle\)OAB is :

Circle The Tangent To A Circle With The Centre O

  1. 20°
  2. 40°
  3. 30°
  4. 15°

Answer: 1. 20°

Question 4. If two tangents of a circle of radius 6 cm are drawn such that the angle between them is 60 then the length of each tangent is :

  1. 2 \(\sqrt{3} \mathrm{~cm}\)
  2. 6 \(\sqrt{3} \mathrm{~cm}\)
  3. 3 cm
  4. 6 cm

Answer: 2. 6 \(\sqrt{3} \mathrm{~cm}\)

Question 5. Two tangents PQ and PR are drawn to a circle of radius 5 cm where P is 13 cm away from centre O. The area of quadrilateral PQOR is :

  1. \(60 \mathrm{~cm}^2\)
  2. \(30 \mathrm{~cm}^2\)
  3. \(65 \mathrm{~cm}^2\)
  4. \(32.5 \mathrm{~cm}^2\)

Answer: 1. \(60 \mathrm{~cm}^2\)

Class 10 Maths Circles important questions and answers

Question 6. In the adjoining figure, O is the centre of the circle, PQ is the chord and the tangent PR drawn from points on the circle makes a 50° angle from chord PQ, \(\angle\) POQ is :

Circle The Chord And The Tangent Are Drawn From A Point

  1. 90°
  2. 80°
  3. 100°
  4. 75°

Answer: 3. 100°

Question 7. The radii of two circles are 3 cm and 4 cm and both circles touch each other externally. The distance between their centres is :

  1. 1 cm
  2. 3 cm
  3. 5 cm
  4. 7 cm

Answer: 4. 7 cm

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions Division Of A Line Segment

To divide a line segment (internally) in a given ratio m: n

Working Rule: (Internal division)

Draw a line segment AB of a given length.

Draw a ray AX making an acute angle XAB with AB.

Mark (m + n) points A1, A2, A3, …, Am+n on AX such that AA1 = A1A2 = A2A3 = … = Am+n-1 Am+n.

Join Am+n B.

Through Am, draw AmY || Am+n B (if m: n) meeting AB at Y. So, Y divides AB internally in the ratio m: n.

Read and Learn More Class 10 Maths Solutions Exemplar

Constructions Meeting AB At Y

NCERT Exemplar Class 10 Maths Chapter 11 Constructions

Through An, draw An1Z || Am+n B (if n: m) meeting AB at Z. So, Z divides AB internally in the ratio n: m.

Constructions Meeting AB At Z

In Short:

Sum (m +n) endpoint

first (m) Parallel (Y)  (say)

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions Solved Problems

Question 1. Determine a point which divides a line segment 7 cm long, internally in the ratio 2:3.

Solution:

Steps of Construction:

  1. Draw a line segment AB = 7 cm by using a ruler.
  2. Draw any ray malting an acute ZBAC with AB.
  3. Along AC, mark off (2 + 3) = 5 points A1, A2, A3, A4 and A5 such that AA1 = A1A2 = A2A3 = A3A4 = A4A5.
  4. Join BA5
  5. Through A2 draw a line A2P parallel to A5B by making an angle equal to \(\angle A A_5 B\) at A2 intersecting AB at A point P.

The point P so obtained is the required point.

Constructions Meeting Acute Angle

Justification: In ΔA5B,

A2P || A5B (Construction)

∴ \(\frac{A A_2}{A_2 A_5}=\frac{A P}{P B}\) (by B.P theorem)

⇒ \(\frac{2}{3}=\frac{A P}{P B}\) (Construction)

⇒ AP : PB = 2: 3

i.e., P divides AB internally in the ratio 2 : 3.

Alternate Method:

Draw the line segment AB = 7 cm.

Draw any ray AC making an acute angle ∠BAC with AB.

Draw a ray BD parallel to Ac by making ∠ABC equal to angle ∠BAC.

Mark off 2 points A1 and A2 on AC and 3 points B1, B2, B3 on AD such that AA1 = A1A2 = BB1 = B1B2 = B2B3

Join B3A2, suppose it intersects AB at point P. Then, P is the required point.

Constructions Meeting Intersects AB At Point P

To Divide a Line Segment (Externally) in a Given Ratio m: n

Working Rule: (External Division)

Constructions Meeting To Divided A Line Segment

Question 2. Determine a point which divides a line segment 6 cm long externally in the ratio 5 : 3.

Solution:

Steps of Construction:

  1. Draw a line segment AB = 6 cm.
  2. Draw any ray making an acute ∠BAX with AB.
  3. Along AX, mark off (larger among the ratios) 5 points A1, A2, A3, A4, A5 such that AA1 = A1A2 = A2A3 = A3A4 = A4A5.
  4. Join the point A2 (5-3) with end point B.
  5. Draw a line parallel to A2B from A5 (larger among the ratios) which meets AB produced at P.

The point P, so obtained is the required point such that AP: BP = 5 : 3.

Constructions Meets AB Produced At P

Justification: In AA5P,

Since A2B || A5P, (Construction)

∴ \(\frac{A P}{B P}=\frac{A A_5}{A_2 A_5}\) (by B.P theorem)

⇒ \(\frac{A P}{B P}=\frac{5}{3}\) (Construction)

Question 3. Determine a point which divides a line segment 6 cm long externally in the ratio 3:5.

Solution:

Steps of Construction:

  1. Draw a line segment AB = 6 cm.
  2. Draw any ray making an acute ∠ABX with AB.
  3. Along BX, mark off (larger among the ratios) 5 points B1, B2, B3, B4 and B5 such that BB1 =B1B2 = B2B3 — B3B4 = B4B5.
  4. Join the point B2 (5 – 3) with endpoint A
  5. Draw a line parallel to B2A from B5 (larger among the ratios) which meets BA produced at P.

The point P so obtained is the required point such that AP: BP = 3:5.

Constructions Meets BA Produced At P

Justification: In ΔPBB5,

Since, B2A || B5P (Construction)

∴ \(\frac{B_2 B_5}{B B_5}=\frac{A P}{B P}\) (by B.P theorem)

⇒ \(\frac{3}{5}=\frac{A P}{B P}\) (Construction)

i.e., P divides AB externally in the ratio of 3:5

Class 10 Maths Constructions Exemplar Solutions

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions To Construct A Triangle Similar To A Given Triangle

Question 1. Construct a triangle similar to a given triangle ABC such that each of its sides is \(\frac{2}{3} \mathrm{rd}\) of the corresponding sides of the triangle ABC. It is given that AB = 4 cm, BC = 5 cm and AC = 6 cm.

Solution:

Given

It is given that AB = 4 cm, BC = 5 cm and AC = 6 cm.

Steps of construction:

  1. Take BC = 5cm and Construct ΔABC with BA = 4cm and CA = 6cm.
  2. Divide BC into three equal parts.
  3. Let C be a point on BC such that \(B C^{\prime}=\frac{2}{3} B C\)
  4. Draw A’C parallel to AC through C” intersecting BA at A’. ΔA’BC” is the required triangle.

Constructions Triangle

Question 2. Construct an isosceles triangle whose base is 6 cm and altitude 4 cm. Then construct another triangle whose sides are \(\frac{3}{4}\) times the corresponding sides of the first triangle.

Solution:

Steps to Construction:

  1. Draw a line segment BC = 6 cm.
  2. Draw a perpendicular bisector of BC.
  3. From mid-point D of BC on perpendicular bisector mark DA = 4 cm, join AB and AC.
  4. Below BC make an acute angle ∠CBZ.
  5. Along BZ mark off four points B1, B2, B3 and B4 such that BB1 = B1B2 = B2B3 = B3B4.
  6. Join B4C.
  7. From B3 draw B3E parallel to B4C meeting BC at E.
  8. From E draw EF || CA meeting BA at F. Then, ΔFBE is the required triangle.

Constructions Isosceles Triangle

Question 3. Construct a quadrilateral ABCD with AB = 3 cm, AD = 2.7 cm, DB = 3.6 cm, ∠B =110° and BC = 4.2 cm. Construct another quadrilateral A’BC’D’ similar to quadrilateral ABCD so that diagonal BD’ = 4.8 cm.

Solutions:

Steps to construction:

  1. Draw a line segment BC = 4.2 cm
  2. At B, construct angle YBC = 110°
  3. With centre B and a radius equal to 3 cm, draw an arc-cutting BT at A.
  4. With centre A and a radius equal to 2.7 cm, draw an arc.
  5. With centre B and radius equal to 3.6 cm, draw another arc cutting the previous arc at D.
  6. Join AD, CD and BD. Then, ABCD is the required quadrilateral.
  7. Produce BD to D’ such that BD’ = 4.8 cm.
  8. From D’, draw a line parallel to DA which cuts BY at A’.
  9. From D’, draw a line parallel to DC which cuts BC produced at D’.

Then, □ - Wiktionary, the free dictionaryA’BC’D’ is the required quadrilateral similar to □ - Wiktionary, the free dictionaryABCD.

Constructions A Quadrilateral

Question 4. Construct a cyclic quadrilateral ABCD in which AB = 4.2 cm, BC = 5.5 cm, CA = 4.6 cm and AD = 3 cm. Also, construct a quadrilateral similar to □ - Wiktionary, the free dictionaryABCD whose sides are 1 .5 times the corresponding sides of □ - Wiktionary, the free dictionaryABCD.

Solution:

Steps to construction:

  1. Draw a line segment AB = 4.2 cm.
  2. With centre A and a radius equal to 4.6 cm, draw an arc.
  3. With centre B and radius equal to 5.5 cm, draw another arc cutting the previous arc at C.
  4. Join AC and BC.
  5. Draw the perpendicular bisectors of any two sides say AB and BC respectively of ΔABC. Let them intersect each other at O.
  6. Taking O as the centre and radius as OA or OB or OC, draw a circle. This is the circumcircle of ΔABC.
  7. With centre A and radius equal to 3 cm, cut an arc on the opposite side of B, to cut the circle at D.
  8. Join AD and CD. Then, □ - Wiktionary, the free dictionaryABCD is the required cyclic quadrilateral.
  9. Produce Ac to C’ such that \(A C^{\prime}=1.5 \times A C \text { i.e., }\left(1+\frac{1}{2}\right) A C \Rightarrow A C+\frac{1}{2} \times 4.6\) i.e., 2.3cm more.
  10. From C’, draw a line parallel to CD which meets AD produced at D’.
  11. From C’, draw a line parallel to CB which meets AB produced at B’. Then, □ - Wiktionary, the free dictionaryAB’C’D’ is the required quadrilateral similar to cyclic quadrilateral ABCD.

Constructions A Cyclic Quadrilateral

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions Of Tangents To A Circle

Question 1. Take a point O on the plane of the paper. With O as the centre draw a circle of radius 4 cm. Take a point on this circle and draw a tangent at P.

Solution:

Steps of Construction:

  1. Take a point O on the plane of the paper and draw a circle of a given radius of 4 cm.
  2. Take a point P on the circle and join OP.
  3. Construct ∠OPT = 90°.
  4. Produce TP to T’ to obtain the required tangent TPT’.

Constructions Tangent At P

Question 2. Draw a circle of radius 3 cm. Take a point P on it. Without using the centre of the circle, draw a tangent to the circle at point P.

Solution:

Steps of construction:

  1. Draw any chord PQ through the given point P on the circle.
  2. Take a point R on the circle and join P and Q to a point R.
  3. Construct ∠QPY = ∠PRQ and on the opposite side of the chord PQ.
  4. Produce YP to X to get YPX as the required tangent.

Constructions Tangent To The Circle At Point P

Question 3. Draw a circle of radius 2.5 cm. Take a point at a distance of 5 cm from the centre of the circle. From point P, draw two tangents to the circle.

Solution:

Steps of Construction:

  1. Take a point O in the plane of the paper and draw a circle of radius 2.5 cm.
  2. Mark a point P at a distance of 5.0 cm from the centre O and, join OP.
  3. Draw the right bisector of OP, intersecting OP at Q.
  4. Taking Q as a centre and OQ = PQ as the radius, draw a circle to intersect the given circle at T and T.
  5. Join PT and PT’ to get the required tangents.

Constructions Two Tangent To The Circle

Question 4. Draw a pair of tangents to a circle of radius 5 cm inclined to each other at an angle of 60°.

Solution:

Steps of Construction:

  1. Take a point O on the plane of the paper and draw a circle with centre O and radius OA = 5 cm.
  2. At O construct radii OA and OB such that ∠AOB equals 120° i.e., supplement of the angle between the tangents.
  3. Draw perpendiculars to OA and OB at A and B respectively suppose these perpendiculars intersect at P. Then, PA and PB are required tangents.

Constructions Pair Of Tangent To The Circle

Question 5. Draw a circle of radius 4 cm. Take a point P outside the circle. Without using the centre of the circle, draw two tangents to the circle from point P.

Solution:

Steps of Construction:

  1. Draw a line segment of 4 cm.
  2. Take a point P outside the circle and draw a second PAB, intersecting the circle at A and B.
  3. Produce AP to C such that AP = CP.
  4. Draw a semi-circle with CB as the diameter.
  5. Draw PD ⊥ CB, intersecting the semi-circle at D.
  6. Widi P as centre and PD as radius draw arcs to intersect the given circle at T and T’.
  7. Join PT and PT’. Then, PT and PT’ are the required tangents.

Constructions Two Tangent Two The Circle From Point P

NCERT Exemplar Solutions for Constructions Class 10

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions Exercise 11.1

Question 1. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.

Solution:

Steps of construction :

  1. Draw a line segment AB = 7.6 cm.
  2. Draw a ray AX which forms an acute angle from AB.
  3. Cut (8 + 5) = 13 equal marks on ray AX and mark them X1, X2, X3, X4, …, X13.
  4. Join X13 to B.
  5. Draw X5C || X13 B from X5 which meets AB at C.

So, point C divides the line segment AB in the ratio 5:8.

On measuring two line segments, we get AC = 4.7 cm, BC = 2.9 cm

Constructions Line Segment

Verification: In ΔABX13 and ΔACX5, CX5 || BX13

∴ \(\frac{A C}{C B}=\frac{A X_5}{X_5 X_{13}}=\frac{5}{8}\)

⇒ AC: AB = 5:8

Question 2. Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are \(\frac{2}{3}\) of the corresponding sides of the first triangle.

Solution:

Steps of construction:

  1. Construct a ΔABC such that BC = 6 cm, AC = 5 cm and AB = 4 cm.
  2. Draw a ray BX such that ∠CBX is at an acute angle.
  3. Mark three points X1, X2 and X3 on BX such that BX1 = X1X2 = X2X3.
  4. Join X3 and C.
  5. Draw a line parallel to line X3C from X2 which intersects BC at C’.
  6. Draw a line parallel to line CA from C which meets BA at A’.

So, ΔA’B C’ is the required triangle.

Constructions Two Triangles

Verification: By construction

X3C || X2C’  ⇒ \(\frac{B X_2}{X_2 X_3}=\frac{B C^{\prime}}{C^{\prime} C}\)

but \(\frac{B X_2}{X_2 X_3}=\frac{1}{2} \quad ⇒ \quad \frac{B C^{\prime}}{C^{\prime} C}=\frac{2}{1}\)

⇒ \(\frac{C^{\prime} C}{B C^{\prime}}=\frac{1}{2}\)

Adding 1 on both sides,

⇒ \(\frac{C^{\prime} C}{B C^{\prime}}+1=\frac{1}{2}+1\)

⇒ \(\frac{C^{\prime} C+B C^{\prime}}{B C^{\prime}}=\frac{1+2}{2} = \frac{B C}{B C^{\prime}}=\frac{3}{2}\)

Now, in ΔBC’A’ and ΔBCA,

CA || C’A’

from A.A. similarity, ΔBC’A’ ∼ ΔBCA

⇒ \(\frac{A^{\prime} B}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B C^{\prime}}{B C} \quad\left[\text { each }=\frac{2}{3}\right]\)

Question 3. Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are \(\frac{7}{5}\) of the corresponding sides of the first triangle.

Solution:

Steps of construction:

  1. Draw a line segment BC = 5 cm
  2. Draw two arcs with centres B and C of radii 7 cm and 6 cm respectively which intersect each other at A.
  3. Join BA and CA. ΔABC is the required triangle.
  4. Draw a ray BX from B downwards, making an acute angle ∠CBX.
  5. Mark seven points B1, B2, B3, B4, B5, B6 and B7 on B8 such that BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7
  6. Join B5C and draw B7M || B5C from B7, which intersects the produced BC at M.
  7. Draw MN || CA from point M which intersects the produced BA at N.

Now ΔNBM is the required triangle whose sides are \(\frac{7}{5}\) of the sides of ΔABC.

Constructions A Triangle And Then Another Triangle

Justification:

By construction,

B7M || B5C

∴ \(\frac{B C}{C M}=\frac{5}{2}\)

Now, \(\frac{B M}{B C}=\frac{B C+C M}{B C}\)

= \(1+\frac{C M}{B C}=1+\frac{2}{5}=\frac{7}{5}\)

∴ \(\frac{B M}{B C}=\frac{7}{5}\)

and, MN || CA

∴ ΔABC ∼ ΔNBM

and \(\frac{N B}{A B}=\frac{B M}{B C}=\frac{M N}{C A}=\frac{7}{5}\)

Question 4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are \(1 \frac{1}{2}\) times the corresponding sides of the isosceles triangle.

Solution:

Steps of construction:

  1. Draw the line segment BC = 8cm.
  2. Draw the perpendicular bisector OQ of BC which intersects BC at P.
  3. Take PA = 4 cm along PO.
  4. Join BA and CA. Now ΔABC is the required isosceles triangle.
  5. Draw a ray BX from B making acute angle ∠CBX.
  6. Mark three points B1, B2 and B3 on BX such that BB1 = B1B2 = B2B3
  7. Join B2C and draw B3N || B2C from B3 which intersects the Produced BC at N.
  8. Draw NM || CA from point N which intersects the produced BA at M.

Then ΔMBN is the required rectangle.

Constructions An Isosceles triangle

Justification:

∵ B3 || B2C (by construction)

∴ \(\frac{B C}{C N}=\frac{2}{1}\)

Now \(\frac{B N}{B C}=\frac{B C+C N}{B C}=1+\frac{C N}{B C}=1+\frac{1}{2}=1 \frac{1}{2}\)

Question 5. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and ABC = 60°. Then construct a triangle whose sides are \(\frac{4}{3}\) of the corresponding sides of the triangle ABC.

Solution:

Steps of construction:

  1. Construct a triangle ABC such that BC = 6 cm, AB = 5 cm and ∠ABC = 60°.
  2. Draw a ray \(\overrightarrow{B X}\) such that CBX is an acute angle.
  3. Mark four points X1, X2, X3, and X4 on BX such that BX1 = X1X2 = X2X3 = X3X4.
  4. Join X4C.
  5. Draw X3C’ || X4C which intersects BC at C.
  6. Draw a line from C, parallel to CA which intersects BC at A’.

So, ΔA’BC’ is the required triangle.

Constructions Triangle ABC

Verification: By construction

X4C || X3C’ [from B.P.T.]

∴ \(\frac{B X_3}{B X_4}=\frac{B C^{\prime}}{B C} \text { but } \frac{B X_3}{B X_4}=\frac{3}{4}\) (by construction)

⇒ \(\frac{B C^{\prime}}{B C}=\frac{3}{4}\) → (1)

Now, CA || C’A’ (by construction)

ΔBC’A’ BCA [from A.A. similarity]

⇒ \(\frac{A^{\prime} B}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B C^{\prime}}{B C}=\frac{3}{4}\) [from (1)].

Chapter 11 Constructions Class 10 Maths Exemplar

Question 6. Draw a triangle ABC with side BC = 7 cm, ∠B = 45°, ∠A = 105°. Then, construct a triangle whose sides are \(\frac{4}{3}\) times the corresponding sides of ΔABC.

Solution:

Steps of construction:

  1. Construct a ΔABC such that BC = 7 cm, ∠B = 45° and ∠A = 105°.
  2. Draw a ray BX such that ∠CBX is at an acute angle.
  3. Mark four points X1, X2, X3 and X4 on BX such that:
    Bx1 = X1X2 = X2X3 = X3X4.
  4. Draw a line from X4 parallel to X3C which intersects BC produced at C’.
  5. Draw a line from C parallel to CA, that intersects BA produced at A’.
  6. Thus, ΔA’BC’ is the required triangle.

Constructions A Triangle Corresponding Sides Of ABC

Verification: By construction,

C’A’ || CA [from A.A. similarity]

ΔABC ∼ ΔA’BC’

⇒ \(\frac{A^{\prime} B}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B C^{\prime}}{B C}\) → (1)

Again, by construction

X4C’ || X3C

∴ BX4C’ BX3C

⇒ \(\frac{B C^{\prime}}{B C}=\frac{B X_4}{B X_3}\)

but \(\frac{B X_4}{B X_3}=\frac{4}{3} \Rightarrow \frac{B C^{\prime}}{B C}=\frac{4}{3}\) → (2)

from (1) and (2),

∴ \(\frac{A^{\prime} B}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B C^{\prime}}{B C}=\frac{4}{3}\).

Question 7. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are \(\frac{5}{3}\) times the corresponding sides of the given triangle.

Solution:

Steps of construction:

  1. Draw a line segment BC = 4 cm.
  2. Draw a line segment AB = 3 cm from B which makes a 90° angle from BC.]
  3. Join AC. ΔABC is the given right-angled triangle.
  4. Draw an acute angle ∠CBY from B downwards.
  5. Mark 5 points B1, B2, B3, B4 and B5 on BY such that BB1 = B1B2 = B2B3 = B3B4 = B4B5.
  6. Join B3C.
  7. Draw B5C’ || B3 C from B5, which meets the produced BC at C.
  8. Draw C’A’ || CA from C’ which meets the produced BA at A’

So, ΔA’BC’ is the required triangle.

Constructions A Right Triangle

Justification:

By construction, B5C’ || B3C

∴ \(\frac{B C}{C C^{\prime}}=\frac{3}{2}\)

Now, \(\frac{B C^{\prime}}{B C}=\frac{B C+C C^{\prime}}{B C}=1+\frac{C C^{\prime}}{B C}\)

= \(1+\frac{2}{3}=\frac{5}{3}\)

and, C’A’ = CA

∴ ΔABC ∼ ΔA’BC’

and \(\frac{A^{\prime} B}{A B}=\frac{B C^{\prime}}{B C}=\frac{A^{\prime} C^{\prime}}{C A}=\frac{5}{3}\)

NCERT Exemplar For Class 10 Maths Chapter 11 Constructions Exercise 11.2

Question 1. Question 1. Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution:

Steps of construction:

  1. Mark a point O.
  2. Draw a circle with centre O and a radius of 6 cm.
  3. Mark a point P at a distance of 10 cm from the centre.
  4. Join O and P
  5. Bisects OP at point M.
  6. With the centre at point M, draw a circle with a radius MO or MP which intersects the given circle at A and B.
  7. Join PA and PB. So, PA and PB are two required tangents. On measuring PA = PB = 9.6 cm.

Constructions The Pair Of Tangent To The Circle

Verification: Join OA and OB. Since OP is a diameter.

∠OAP = 90º; ∠OBP = 90º [angle in semicircle]

Again OA and OB are the radii of a circle.

⇒ PA and PB are tangents to the circle.

Class 10 Constructions Questions with Solutions

Question 2. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation.

Solution:

Steps of construction:

  1. Draw two circles of radii 4 cm and 6 cm with a centre O.
  2. Mark a point P on a larger circle.
  3. Join O and P.
  4. Find the point M of the perpendicular bisector of.OP.
  5. With centre M and radius OM or PM draw a circle which intersects the smaller circle at A and B.
  6. Join A and P.

So, PA is the required tangent. On measuring PA = 4.5 cm.

Constructions A Tangent To A Circle Of Radius

Verification: Join O and A.

∠PAO = 90° [angle in semcircle]

PA ⊥ OA

∵ OA is the radius of the small circle.

∴ PA is a tangent of the smaller circle

Question 3. Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameters each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

Solution:

Given : P and Q are two points on a diameter of the circle of radius 3 cm.

and OP = OQ = 7cm

We have to construct the tangents to the circle from P and Q.

Steps of construction:

  1. Draw a circle of radius 3 cm with centre O.
  2. Produce its diameter on both sides and take two points P and Q on it such that OP = OQ = 7 cm.
  3. Bisect OP and OQ. Let E and F be the mid-points of OP and OQ respectively.
  4. Draw a circle with centre E and radius OE, which intersects the given circle (0, 3) at M and N. Again draw a circle with centre F and radius OF which intersects the given circle at P’ and Q’.
  5. Join PM, PN, QP’ and QQ’. These are the required tangents from P and Q to the circle (0, 3).

Constructions Tangents To The Circle Of Two Points

Justification:

Join OM and ON. ∠OMP lies in the semicircle, so ∠OMP = 90°. OM is the radius of the circle, so MP is the tangent to the circle. Similarly PN, QP’ and OQ’ are also the tangents to the circle.

Question 4. Draw a pair of tangents to a circle of radius 5 cm inclined to each other at an angle of 60°.

Solution:

Steps of construction:

  1. Construct a circle with centre O and radius = 5 cm.
  2. Draw ∠AOB = 120°.
  3. Draw a perpendicular on OA from point A.
  4. Draw a perpendicular on OB from B.
  5. Both perpendiculars intersect each other at point C.

So, CA and CB are the required tangents to the circle, inclined at a 60° angle.

Constructions A Pair Of Tangents To A Circle

Verification:

In quadrilateral OACB, from angle sum property.

⇒ 120° + 90° + 90° + ∠ACB = 360°

⇒ 300° + ∠ACB = 360°

⇒ ∠ACB = 360°- 300° = 60°

Question 5. Draw a line segment AB of length S cm. Taking A as the centre, draw a circle of radius 4 cm and taking B as the centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.

Solution:

Steps of construction:

  1. Draw a line segment AB = 8 cm.
  2. Draw a circle of radius 4 cm taking A as the centre.
  3. Draw another circle of radius 3 cm talcing B as the centre.
  4. Draw the perpendicular bisector of AB and find the mid-point M of AB.
  5. Draw the circle with centre M and radius MA or MB which intersects the circle with centre A at P and Q and the circle with centre F at R and S.
  6. Join BP and FQ. So, BP and FQ are the required tangents on a circle with centre A from B.
  7. Now join RA and SA.

So, RA and SA are the tangents on a circle with centre B from A.

Constructions Tangents To Each Circle From The Centre Of The Other Circle

Verification: Join A and P.

∠APB = 90° => BP ⊥ AP

but AP is the radius of a circle with centre A.

⇒ AP is a tangent of the circle with centre A.

Similarly, BQ is also a tangent of the circle with centre A. Similarly AR and AS are the tangents of the circle with centre B.

NCERT Exemplar problems and solutions for Class 10 Constructions

Question 6. Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and B = 90° BD is the perpendicular from b on AC. The circle through B, C, and D is drawn. Construct the tangents from A to this circle.

Solution:

Given

Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and B = 90° BD is the perpendicular from b on AC. The circle through B, C, and D is drawn.

Steps of construction:

  1. Draw line segments AB = 6 cm and BC= 8 cm perpendicular to each other. Join AC. Now ΔABC is a right-angled triangle.
  2. Taking the mid-point F of BC as the centre and radius of 4 cm, draw a circle which passes through points B, C and D.
  3. Join AF and bisects A it. Let O be the midpoint of AF.
  4. The circle drawn with f centre O and radius OA intersects the given circle at B and M.
  5. Join AB and AM, which are the required tangents.

Constructions Right Triangle

Justification:

Join FM and FB. Now ∠AMF lies in a semicircle,

so ∠AMF = 90° ⇒ FM ⊥ AM

∵ FM is the radius of the circle, so AM is the tangent to the circle and F is the centre.

Similarly, AB is also the tangent to the circle with centre F.

Class 10 Maths Chapter 11 Constructions solved questions

Question 7. Draw a circle with the help of a bangle Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Solution:

Steps of construction:

  1. Draw a circle using a bangle.
  2. Draw two chords AP and MT. The perpendicular bisectors of AP and MT intersect each other at O, which is the centre of the circle.
  3. Take a point R outside the circle. Join OR and bisect it.
  4. Let Q be the mid-point of OR. The circle drawn with centre Q and radius OQ intersects the given circle at S and N.
  5. Join RS and RN, so RS and RN are the required tangents from R.

Constructions The Pair Of Tangents From This Point To The Circle

Justification:

Join OS and ON. ∠OSR lies in a semicircle, so

∠OSR = 90° ⇒ OS || SR

∵ OS is the radius of a circle with a centre of O, so SR is the centre of that circle whose centre is O. Similarly, RN is also the tangent to the circle with a centre of O.

NCERT Exemplar For Class 10 Maths Chapter 9 Some Applications Of Trigonometry

NCERT Exemplar For Class 10 Maths Chapter 9 Some Applications Of Trigonometry

Practical Use Of Trigonometry

The main purpose of studying trigonometry is to determine the height of buildings, towers, telephone poles, trees, the width of the river, the distance of the ship from the lighthouse etc. Although it is not easy to measure them, we can determine these things by using knowledge of trigonometric ratios, before doing so, let us first discuss some necessary definitions.

NCERT Exemplar For Class 10 Maths Chapter 9 Some Applications Of Trigonometry

Line Of Sight: When an observer looks at an object then the line joining the observer’s eye to the object is called the line of sight.

Angle Of Elevation: When an observer sees an object situated in an upward direction, the angle formed by the line of sight with a horizontal line is called an angle of elevation.

NCERT Exemplar Class 10 Maths Chapter 9

Read and Learn More Class 10 Maths Solutions Exemplar

Applications Of Trigonometry Angle Of Elevation

Angle Of Depression: When an observer sees an object .situated in a downward direction, the angle formed by the line of sight with a horizontal line is called an angle of depression.

Applications Of Trigonometry Angle Of Depression

In the adjoining above given, θ is the angle of depression of the object as seen from O.

NCERT Exemplar For Class 10 Maths Chapter 9 Some Applications Of Trigonometry Solved Examples

Example 1. The length of the shadow of a vertical pole is \(\frac{1}{\sqrt{3}}\) times its height. Show that the angle of elevation of the sun is 60°.

Solution:

Given:

The length of the shadow of a vertical pole is \(\frac{1}{\sqrt{3}}\) times its height.

Let PQ be a vertical pole whose height is \(\frac{h}{\sqrt{3}}\). Its shadow is OQ whose height is.

Let the angle of elevation of the sun be \(\angle\)POQ = 0

Applications Of Trigonometry The Angle Of Elevation Of Sun Is 60 Degrees

In \(\triangle\)POQ,

⇒ \(\tan \theta =\frac{P Q}{O Q}=\frac{h}{h / \sqrt{3}}=\sqrt{3}=\tan 60^{\circ}\)

⇒  \(\theta =60^{\circ}\)

The angle of elevation of the sun = 60°.

Example 2. If a tower 30 m high, casts a shadow 10 \(\sqrt{3}\) m long on the ground, then what is the angle of elevation of the sun?

Solution:

It is given that AB = 30 m be the height of the tower and BC = \(\sqrt{3}\) m its shadow on the ground.

Applications Of Trigonometry The Angle Of The Elevation Of Sun

Let \(\theta\) be the angle of elevation.

In a right triangle,

⇒  \(\tan \theta =\frac{A B}{B C}\)

= \(\frac{30}{10 \sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}\)

= \(\tan 60^{\circ}\)

⇒  \(\theta =60^{\circ}\)

Hence, the angle of elevation of the sun= 60°

Example 3. A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Solution:

Given:

A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall

Let PR be a ladder of length 15 m and QR, a wall of height h.

Applications Of Trigonometry The Ladder Makes An Angle Then The Height Of The Wall

Given that \(\angle\)PRQ = 60°

In \(\triangle P Q R\),

⇒  \(\cos 60^{\circ} =\frac{h}{P R} \quad \Rightarrow \quad \frac{1}{2}=\frac{h}{15}\)

⇒  \(\Rightarrow \quad h =\frac{15}{2} \mathrm{~m}\)

Height of the wall =\(\frac{15}{2} \mathrm{~m}=7.5 \mathrm{~m}\)

Question 4. The shadow of a tower standing on a level plane is found to be 50 m longer when the sun’s elevation is 30° than when it is 60°. Find the height of the tower.

Solution:

Given

The shadow of a tower standing on a level plane is found to be 50 m longer when the sun’s elevation is 30° than when it is 60°.

Let AB be a tower of height ‘h’ metres and BD and BC be its shadows when the angles of elevation of the sun are 30° and 60° respectively.

Applications Of Trigonometry The Shadow Of A Tower Standing On A Level Plane Then The Height Of The Tower

⇒  \(\angle A D B=30^{\circ}, \angle A C B=60^{\circ} \text { and } C D=50 \mathrm{~m}\)

Let BC = x metres.

In \(\triangle A B C\)

⇒  \(\tan 60^{\circ} =\frac{A B}{B C} \quad \Rightarrow \quad \sqrt{3}=\frac{h}{x}\)

⇒  \( x =\frac{h}{\sqrt{3}}\)

In \(\triangle A B D\)

⇒  \(\tan 30^{\circ}=\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x+50}\)

⇒  \(\sqrt{3} h=x+50 \Rightarrow \sqrt{3} h=\frac{h}{\sqrt{3}}+50\)

⇒  \(h=h+50 \sqrt{3} \quad \Rightarrow \quad 2 h=50 \sqrt{3} \quad \Rightarrow \quad h=25 \sqrt{3}\)

Height of the tower =\(25 \sqrt{3} \mathrm{~m}\)

Question 5. The angle of elevation of the top of a tower from a point on the ground is 30°. After walking 40 m towards the tower, the angle of elevation becomes 60°. Find the height of the tower.

Solution:

Given

The angle of elevation of the top of a tower from a point on the ground is 30°. After walking 40 m towards the tower, the angle of elevation becomes 60°.

Let AB be a tower of height 7i’ metres. From points D and C on the ground, the angle of elevation of top A of the tower is 30° and 60° respectively.

Applications Of Trigonometry The Angle Of Elevation Of The Top Of A Tower From A Point

Given that CD = 40 m

Let BC = x metres

In \(\triangle A B C\)

⇒ \(\tan 60^{\circ} =\frac{A B}{B C} \quad \Rightarrow \quad \sqrt{3}=\frac{h}{x}\)

x =\(\frac{h}{\sqrt{3}}\)

In \(\triangle A B D\)

⇒ \(\tan 30^{\circ} =\frac{A B}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{40+x}\)

⇒ \(\sqrt{3} h =40+x \Rightarrow \sqrt{3} h=40+\frac{h}{\sqrt{3}}\)

⇒ \(3 h =40 \sqrt{3}+h \Rightarrow 2 h=40 \sqrt{3}\)

⇒ \(h =20 \sqrt{3}\)

Height of the tower =\(20 \sqrt{3} \mathrm{~m}\)

Question 6. The angle of elevation of the top of a tower from two points distant ‘s’ and ‘t’ from its foot are complementary. Prove that the height of the tower is \(\sqrt{st}\) .

Answer:

Given

The angle of elevation of the top of a tower from two points distant ‘s’ and ‘t’ from its foot are complementary.

Let BC be a tower of height ‘h’. Let AC = s and DC = t.

From points A and D, the angle of elevation of top B of the tower is complementary.

Applications Of Trigonometry The Angles Of Elevation Of The Top Of Tower From Two Points At A Distance

Let \(\angle B A C=\theta\)

⇒ \(\angle B D C=90^{\circ}-\theta\)

In \(\triangle B A C\)

⇒ \(\tan \theta=\frac{B C}{A C}=\frac{h}{s}\)

In \(\triangle B D C\)

⇒ \(\tan \left(90^{\circ}-\theta\right) =\frac{B C}{C D} \Rightarrow \cot \theta=\frac{h}{t}\)

⇒ \(\Rightarrow\frac{1}{\tan \theta} =\frac{h}{t} \quad \Rightarrow \frac{s}{h}=\frac{h}{t}\)

⇒ \(h^2 =s t \Rightarrow h=\sqrt{s t}\)

height of the tower =\(\sqrt{s t}\)

Example 7. A tree is broken by the wind. The top struck the ground at an angle of 30° and at a distance of 4 m from the root. Find the height of the tree before broken.

Solution:

Given

A tree is broken by the wind. The top struck the ground at an angle of 30° and at a distance of 4 m from the root.

Given that A B=4 m and \(\angle\) B A C=\(30^{\circ}\). Also C D=C A In \(\triangle \)A B C,

Applications Of Trigonometry A Tree Broken By The Wind Then The Height Of The Tree Before Broken

⇒  \(\tan 30^{\circ}=\frac{B C}{A B} \quad \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{B C}{4}\)

B C=\(\frac{4}{\sqrt{3}} \mathrm{~m}\)

and \(\quad \cos 30^{\circ}=\frac{A B}{A C} \quad \Rightarrow \quad \frac{\sqrt{3}}{2}=\frac{4}{A C}\)

A C=\(\frac{8}{\sqrt{3}} \mathrm{~m} \Rightarrow C D=\frac{8}{\sqrt{3}} \mathrm{~m}( A C=C D)\)

Now the total height of the tree =B C+C D

= \(\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4 \sqrt{3} \mathrm{~m}\)

The height of the tree before broken = \(4 \sqrt{3} \mathrm{~m}\)

Applications of Trigonometry Class 10 Exemplar

Example 8. From the top of a tower 71 m high, the angles of depression of two objects, which are in line with the foot of the tower are \(\alpha\) and \(\beta(\beta>\alpha)\). Find the distance between the two objects.

Solution:

Given

From the top of a tower 71 m high, the angles of depression of two objects, which are in line with the foot of the tower are \(\alpha\) and \(\beta(\beta>\alpha)\).

Let AB be a tower of height ‘h’m. From the top A’ of the tower, the angle of depression of two objects D and C are ‘ \(\beta\) And \(\alpha\) respectively.

Applications Of Trigonometry The Top Of A Tower High And The Angles Of Depression Then The Distance Between The Two Objects

In \(\triangle A B C\)

⇒ \(\tan \beta=\frac{A B}{B C} =\frac{h}{B C}\)

B C =\(\frac{h}{\tan \beta}=h \cot \beta\)

In \(\triangle A B D\)

⇒ \(\tan \alpha =\frac{A B}{B D}=\frac{h}{B D}\)

B D =\(\frac{h}{\tan \alpha}=h \cot \alpha\)

Subtract equation (1) from (2), we get

⇒ \(B D-B C=h \cot \alpha-h \cot \beta\)

⇒ \(C D=h(\cot \alpha-\cot \beta)\)

⇒ \(C D=h(\cot \alpha-\cot \beta)\)

The distance between the objects =\(h(\cot \alpha-\cot \beta) \mathrm{m}\).

Example 9. Two men are on opposite sides of a tower. They measure the angles of elevation of the top of the tower as 30° and 60°. If the height of the tower is 150 m, find the distance between the two men.

Solution:

Given

Two men are on opposite sides of a tower. They measure the angles of elevation of the top of the tower as 30° and 60°. If the height of the tower is 150 m

Lot CD bo a tower of height 1 50 m. Two men A and B are on the opposite sides of the tower.

Applications Of Trigonometry The Distance Between The Two Men

Given that, \(\angle D A C=60^{\circ}\) and \(\angle D B C=30^{\circ}\)

In \(\triangle D A C\)

⇒ \(\tan 60^{\circ} =\frac{D C}{A C} \quad \Rightarrow \quad \sqrt{3}=\frac{150}{A C}\)

⇒ \(A C =\frac{150}{\sqrt{3}}=50 \sqrt{3} \mathrm{~m}\)

In \(\triangle B C D\)

⇒ \(\tan 30^{\circ} =\frac{D C}{B C} \Rightarrow \frac{1}{\sqrt{3}}=\frac{150}{B C} \Rightarrow B C=150 \sqrt{3} \mathrm{~m}\)

A B = A C+B C

= \((50 \sqrt{3}+150 \sqrt{3}) \mathrm{m}=200 \sqrt{3} \mathrm{~m}\)

Therefore the distance between two \(\mathrm{men}=200 \sqrt{3} \mathrm{~m}\)

Example 10. A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h, At a point on the plane, the angles of elevation of the bottom and the top of the flagstaff are a and p respectively. Prove that the height of the tower is \(\left(\frac{h \tan \alpha}{\tan \beta-\tan \alpha}\right)\)

Solution:

Given:

A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h, At a point on the plane, the angles of elevation of the bottom and the top of the flagstaff are a and p respectively.

Let AB be a tower and BC be the flagstaff.

Let O be the observer.

Applications Of Trigonometry A Vertical Tower Stands On A Horizontal Plane

Now, \(\angle A O B=\alpha\), \(\angle A O C=\beta\) and B C=h

Let A B = H and O A = x

In \(\triangle O A B\)

\(\tan \alpha=\frac{A B}{O A}=\frac{H}{x} \quad \Rightarrow \quad x=\frac{H}{\tan \alpha}\) →  Equation 1

In \(\triangle O A C\)

⇒ \(\tan \beta=\frac{A C}{O A}=\frac{H+h}{x} \Rightarrow x=\frac{H+h}{\tan \beta}\)  → Equation 2

From equations (1) and (2), we get

⇒ \(\frac{H}{\tan \alpha} =\frac{H+h}{\tan \beta}\)

⇒ \(H \tan \beta =H \tan \alpha+h \tan \alpha\)

⇒ \(H(\tan \beta-\tan \alpha) =h \tan \alpha\)

H =\(\frac{h \tan \alpha}{\tan \beta-\tan \alpha}\)

Height of the tower =\(\frac{h \tan \alpha}{\tan \beta-\tan \alpha}\)

Example 11. The angle of elevation of the top of a vertical lower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 47′. Find the height of the tower.

Solution:

Given

The angle of elevation of the top of a vertical lower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 47′.

Let All he a vertical lower. From point C, the angle of elevation of the top of the tower is 60° and from point) as shown, the angle of elevation of the tower is 45°.

⇒ \(\angle A C B=60^{\circ}, \angle A D E=45^{\circ}\) and \(D C=10 \mathrm{~m}\)

In \(\triangle D E\),

Applications Of Trigonometry The Height Of The Tower From The Top

⇒ \(\tan 45^{\circ}=\frac{A E}{D E} \quad \Rightarrow \quad A E=D E \ldots(1)\left( \tan 45^{\circ}=1\right)\)

In \(\triangle A B C\),

⇒ \(\tan 60^{\circ} =\frac{A B}{B C} \quad \Rightarrow \quad \sqrt{3}=\frac{A B}{D E} \quad( B C=D E)\)

\(A B =\sqrt{3} D E\)

A E+B E =\(\sqrt{3} A E\)

⇒ \(B E =A E(\sqrt{3}-1)\)

A E =\(\frac{B E}{\sqrt{3}-1}=\frac{10}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}\)

⇒ \(\frac{10(1.732+1)}{3-1}=5 \times 2.732=13.66\)

Now, A B =A E+B E=A E+C D

= \((13.66+10) \mathrm{m}=23.66 \mathrm{~m}\)

Height of the tower =23.66 m

Example 12. The angle of elevation of the top Q of a vertical towerPQ from a point Y- on the ground is 60°. From a point Y, 40 m vertically above X, the angle of elevation of the top Q of the tower is 45°. Find the height of the tower PQ and the distance PX. (Use \(\sqrt{3}\)=1.73)

Solution:

Given

The angle of elevation of the top Q of a vertical towerPQ from a point Y- on the ground is 60°. From a point Y, 40 m vertically above X, the angle of elevation of the top Q of the tower is 45°.

Let height of tower PQ be h m and let P X = x m

Since, X Y=40=P Z

Q Z=P Q-P Z=h-40.

In right \(\triangle Q Z Y\),

Applications Of Trigonometry The Angle Of Elevation Of The Top Of A Vertical Tower

⇒ \(\tan 45^{\circ}=\frac{h-40}{x} \Rightarrow 1=\frac{h-40}{x}\)

⇒ \(h-40=x \Rightarrow x=h-40\)

In right \(\triangle Q P X\),

⇒ \(\tan 60^{\circ}=\frac{h}{x} \quad \Rightarrow \quad \sqrt{3}=\frac{h}{x}\)

x=\(\frac{h}{\sqrt{3}}\)

From equations (1) and (2), we get

h-40=\(\frac{h}{\sqrt{3}} \quad \Rightarrow h \sqrt{3}-40 \sqrt{3}=h\)

⇒ \(h(\sqrt{3}-1)=40 \sqrt{3} \Rightarrow h=\frac{40 \sqrt{3}}{\sqrt{3}-1}\)

h= \(\frac{40 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=20(3+\sqrt{3})\)

h = \(20(3+1.73)=20 \times 4.73=94.6 \mathrm{~m}\)

x =h-40

=94.6-40=54.6 m

Hence, the height of tower PQ is 94.6 m and the distance P X is 54.6 m.

Example 13. As observed from the top of a lighthouse, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, change from 30° to 60°. Find the distance travelled by the ship during the period of observation.(Use \(\sqrt{3}\)=1.73)

Solution:

Given

As observed from the top of a lighthouse, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, change from 30° to 60°.

Let the height of the lighthouse be A B=100 m and let D be the ship which is sailing towards it. Also, let D C=x m.

Applications Of Trigonometry The Distance Travelled By The Ship During The Period Of Observation

Here, \(\angle C A D =60^{\circ}-30^{\circ}=30^{\circ}\)

⇒ \(\angle C D A =\angle C A D\)

D C=A C=x (angles opposite to equal sides are equal)

Now, in right \(\triangle A B C\),

⇒ \(\sin 60^{\circ}=\frac{A B}{A C} \quad \Rightarrow \quad \frac{\sqrt{3}}{2}=\frac{100}{D C}\)

⇒ \(D C=\frac{200}{\sqrt{3}}=\frac{200 \sqrt{3}}{3}=\frac{200 \times 1.73}{3}\)

⇒ \(D C=\frac{346}{3}\)=115.3 m

Hence, the distance travelled by ship is 115.3 m.

Question 14. An aeroplane is flying at a height of 300 m above the ground. Flying at this height, the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45° and 60° respectively. Find the width of the river. (Use \(\sqrt{3}\)=1.73)

Solution:

Given

An aeroplane is flying at a height of 300 m above the ground. Flying at this height, the angles of depression from the aeroplane of two points on both banks of a river in opposite directions are 45° and 60° respectively.

Let an aeroplane P fly at a height of 300 m above the x-ground

PM = 300m

Depression angles are \(\angle X P A=45^{\circ}\) and \(\angle Y P B=60^{\circ}\).

Applications Of Trigonometry An Aeroplane Is Flying At A Height Above The Ground

Now, in right \(\triangle P M A\),(alternate angles)

⇒ \(\tan 45^{\circ}=\frac{P M}{A M} \quad \Rightarrow \quad 1=\frac{300}{A M} . \quad \Rightarrow \quad A M=300 \mathrm{~m}\)

In right \(\triangle P M B\),

⇒ \(\tan 60^{\circ}=\frac{P M}{M B} \quad \Rightarrow \quad \sqrt{3}=\frac{300}{M B} \quad \Rightarrow \quad M B=\frac{300}{\sqrt{3}}=100 \sqrt{3}\)

Width of river =A M+M B

= \((300+100 \sqrt{3}) \mathrm{m}=(300+100 \times 1.732) \mathrm{m}\)

=(300+173.2) m=473.20 m

Hence, the width of the river = 473.20 m

Example 15. A man observes a car from the top of a tower, which is moving towards the tower at a uniform speed. If the angle of depression of the car changes from 30° to 45° in 12 minutes, find the time taken by the car now to reach the tower.

Solution:

Given

5. A man observes a car from the top of a tower, which is moving towards the tower at a uniform speed. If the angle of depression of the car changes from 30° to 45° in 12 minutes

Let AB = h m be the height of the tower.

Applications Of Trigonometry The Time Taken By The Car Now To Reach The Tower

Since the depression angle changes from 30° to 45° in 12 minutes, therefore, time taken from D to C = 12 min.

Let DC = x m and CB -y m

Now, in right \(\triangle A B C\),

⇒ \(\tan 45^{\circ}=\frac{h}{y} \Rightarrow 1=\frac{h}{y} \Rightarrow h=y\)

In right \(\triangle A B D\),

⇒ \(\tan 30^{\circ} =\frac{h}{x+y} \quad \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{h}{x+y}\)

⇒ \(x+y =h \sqrt{3}\)

x+y =y \(\sqrt{3}\)

⇒ \(y(\sqrt{3}-1) =x\)

Now time taken by car in moving \(x \mathrm{~m}=12 \mathrm{~min}\)

Time taken by car in moving \(y(\sqrt{3}-1) \mathrm{m}=12 \mathrm{~min}\)

Time taken by car in moving \(y \mathrm{~m}=\frac{12}{\sqrt{3}-1} \mathrm{~min}\)

= \(\frac{12(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \min =\frac{12(1.732+1)}{2}\)

=6 \(\times 2.732=16.39 \mathrm{~min}\)

Hence, required time =16.39 minutes.

The time taken by the car now to reach the tower =16.39 minutes.

Example 16. A bird is sitting on the top of an 80 m-high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remains at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird.(Take, \(\sqrt{3}\)=1.73)

Solution:

Given

A bird is sitting on the top of an 80 m-high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remains at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°.

Let P be the position of a bird at the height of 80 m with the angle of elevation 45° from A.

Let after 2 seconds, it reaches Q from where its elevation angle is 30°.

Applications Of Trigonometry The Speed Of Flying Of The Bird On The Top Of A High Tree

Now, in right \(\triangle P B A\),

⇒ \(\tan 45^{\circ} =\frac{P B}{A B} \quad \Rightarrow \quad 1=\frac{80}{A B}\)

A B = 80 m

In right \(\triangle Q C A\),

⇒ \(\tan 30^{\circ} =\frac{Q C}{A C} \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{80}{A C}\)

⇒ \(A C =80 \sqrt{3} \mathrm{~m}\)

BC =A C-A B

=80 \(\sqrt{3}-80 \quad=80(\sqrt{3}-1)\)

= \(80(1.732-1)=80 \times 0.732=58.56 \mathrm{~m}\)

Now, speed of bird =\(\frac{\text { Distance }}{\text { time }}=\frac{58.56}{2} \mathrm{~m} / \mathrm{sec}=29.28 \mathrm{~m} / \mathrm{sec}\) .

The speed of flying of the bird =\( 29.28 \mathrm{~m} / \mathrm{sec}\) .

Example 17. The angle of elevation of a cloud from a point 7z’ metres above a lake is a and the angle of depression of its reflection in the lake is p. Prove that the distance of the cloud from the point of observation is \(\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}\)

Solution:

Given:

The angle of elevation of a cloud from a point 7z’ metres above a lake is a and the angle of depression of its reflection in the lake is p.

Let AB be a lake. The angle of elevation of cloud P at point A on height TP from the lake is a and the angle of depression of the reflection F of cloud is \(\beta\).

Applications Of Trigonometry The Distance Of The Cloud From The Point Of Observation

⇒ \(\angle P C E=\alpha and \angle F C E=\beta\)

Let B P=F B=d

P E=B P-E B

P E=B P-A C=d-h

and F E=F B+B E=F B+A C=d+h

Let C E = x

In \(\triangle C E F\),

⇒ \(\tan \beta=\frac{E F}{C E} \quad \Rightarrow \quad \tan \beta=\frac{d+h}{x}\)  → Equation 1

In \(\triangle P E C\),

⇒ \(\tan \alpha=\frac{P E}{C E} \quad \Rightarrow \quad \tan \alpha=\frac{d-h}{x}\)  → Equation 2

Subtract equation (2) from equation (1), we get

⇒ \(\tan \beta-\tan \alpha=\frac{d+h}{x}-\frac{d-h}{x}=\frac{2 h}{x} \quad \Rightarrow \quad x=\frac{2 h}{\tan \beta-\tan \alpha}\)

In \(\triangle P E C\),

⇒ \(\cos \alpha=\frac{C E}{P C}=\frac{x}{P C} \quad \Rightarrow \quad P C=\frac{x}{\cos \alpha}=x \sec \alpha\)  Equation 3

PC = \(\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}\)

Hence, the distance of the cloud from the point of observation =\(\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}\)

Class 10 Trigonometry height and distance solutions

Example 18. A man standing on the deck of a ship which is 14 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Find the distance of the hill from the ship and the height of the hill.

Solution:

Given

A man standing on the deck of a ship which is 14 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°.

Let the height of the hill AB = h m and let the position of man at 14 m above the sea level is D.

Let B C=x \(\mathrm{~m} \Rightarrow D E=x \mathrm{~m}\)

In right \(\triangle D C B\),

Applications Of Trigonometry The Distance Of The Hill From The Ship And The Height Of The Hill

⇒ \(\tan 30^{\circ}=\frac{D C}{B C} \quad \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{14}{x} \quad \Rightarrow \quad x=14 \sqrt{3} \mathrm{~m}\)

In right \(\triangle A E D\),

⇒ \(\tan 60^{\circ} =\frac{A E}{D E} \quad \Rightarrow \quad \sqrt{3}=\frac{h-14}{x}\)

⇒ \(x \sqrt{3} =h-14 \quad \Rightarrow \quad 14 \sqrt{3} \times \sqrt{3}\)=h-14 [ from (1) ]

h =42+14=56 m

Hence, the die distance of the hill from the ship is x i.e., \(14 \sqrt{3} m\) and the height of the hill is 56 m.

NCERT Exemplar For Class 10 Maths Chapter 9 Some Applications Of Trigonometry Exercise 9.1

Question 1. A circus artist is climbing a 20 m-long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.

Solution :

Given:

A circus artist is climbing a 20 m-long rope, which is tightly stretched and tied from the top of a vertical pole to the ground.

In \(\triangle A B C\),

Applications Of Trigonometry The Angle Made By The Rope With The Ground Level

⇒ \(\sin 30^{\circ} =\frac{A B}{A C}\)

⇒ \(\frac{1}{2}=\frac{A B}{20}\)

B =10

Height of pole = 10 m

Question 2. A tree breaks due to a storm and the broken part bends so that the top of the tree touches the ground making an angle of 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

Solution :

Given

A tree breaks due to a storm and the broken part bends so that the top of the tree touches the ground making an angle of 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m.

Let the part CD of the tree BD break in the air and touch the ground at point A.

Applications Of Trigonometry A Tree Breaks Due To Storm And Broken Part And The Height Of The Tree

According to the problem,

AB = 8 m and \(\angle\) BAC = 30°

In \(\triangle A B C\),

⇒ \(\tan 30^{\circ} =\frac{B C}{A B} \quad \stackrel{A 0^{\circ}}{\longleftrightarrow} \mathrm{m}_8\)

⇒ \(\frac{1}{\sqrt{3}} =\frac{B C}{8}\)

⇒ \(B C =\frac{8}{\sqrt{3}} \mathrm{~m}\)

and \(\cos 30^{\circ} =\frac{A B}{A C} \Rightarrow \frac{\sqrt{3}}{2}=\frac{8}{A C}\)

⇒ \(A C =\frac{16}{\sqrt{3}} \mathrm{~m}\)

C D =\(\frac{16}{\sqrt{3}} \mathrm{~m}\) (A C=C D)

Now, the height of the tree = BC + CD

=\(\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}}=8 \sqrt{3} \mathrm{~m}\)

The height of the tree =\( 8 \sqrt{3} \mathrm{~m}\)

Question 3. A contractor plans to install two slides for the children to play in a park. For children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

Solution :

Given

A contractor plans to install two slides for the children to play in a park. For children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground.

Let the slide for elder children be AC and for younger children be DE.

Applications Of Trigonometry The Length Of The Slide In Each Case

In \(\triangle A B C\),

⇒ \(\angle A B C=90^{\circ}\)

A B=3 m

⇒ \(\sin 60^{\circ}=\frac{A B}{A C} \Rightarrow \frac{\sqrt{3}}{2}=\frac{3}{A C}\)

A C=\(\frac{6}{\sqrt{3}}=2 \sqrt{3} \mathrm{~m}\)

In \(\triangle B D E\),

⇒ \(\angle D B E =90^{\circ}\)

B E=1.5 m

⇒ \(\sin 30^{\circ} =\frac{B D}{D E}\)

⇒ \(\frac{1}{2} =\frac{1.5}{D E} \Rightarrow D E\) =3 m

Length of slide for elder children

=2\( \sqrt{3} \mathrm{~m}\)

and length of slide for younger children =3 m

Question 4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Solution :

Let AB be the tower.

The angle of elevation of the top of the tower from point C, 30m away from A is 30°.

Applications Of Trigonometry The Angle Of Elevation Of The Top Of A Tower From A Point On The Ground

In \(\triangle B A C\),

⇒ \(\tan 30^{\circ}=\frac{A B}{A C}\)

⇒ \(\frac{1}{\sqrt{3}}=\frac{A B}{30}\)

⇒ \(A B=\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}\)

Height of the tower =\(10 \sqrt{3} \mathrm{~m}\)

Question 5. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

Solution:

Given

A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°.

Let the height of kite A from the ground is 60 m and AC is the string.

Applications Of Trigonometry The Length OF The String, Assuming That There Is No Slack In The String

Given : \(\angle A C B=60^{\circ}\)

In \(\triangle A B C\),

⇒ \(\sin 60^{\circ}=\frac{60}{A C}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{60}{A C}\)

A C=\(\frac{120}{\sqrt{3}}=40 \sqrt{3} \mathrm{~m}\)

Length of string =40 \(\sqrt{3}\) m

Question 6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building

Solution:

Given

A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building.

Let, the height of building AN = 30 m

Here, BM = height of boy = 1.5 m

DN = BM = 1.5 m

AD = AN -AD = 30- 1.5 = 28.5 m

Applications Of Trigonometry The Distance Walked Towards The Building

In \(\triangle A C D\),

⇒ \(\tan 60^{\circ} =\frac{A D}{C D} \quad \Rightarrow \quad \sqrt{3}=\frac{28.5}{C D}\)

⇒ \(C D =\frac{28.5}{\sqrt{3}}=9.5 \sqrt{3} \mathrm{~m}\)

In \(\triangle A B D\),

⇒ \(\tan 30^{\circ}=\frac{A D}{B D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{28.5}{B D}\)

⇒ \(B D=28.5 \sqrt{3} \mathrm{~m}\)

Now, \(B C=B D-C D\)

=28.5 \(\sqrt{3}-9.5 \sqrt{3}=19 \sqrt{3} \mathrm{~m}\)

Distance walked by boy towards the building \(19 \sqrt{3} \mathrm{~m}\)

Question 7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Solution:

Given

From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively.

Let, CD be the height of the transmission tower.

Here, the height of the building

Applications Of Trigonometry The Height Of The Tower From A Point On The Ground

BC = 20 m

In \(\triangle A B C\),

⇒ \(\tan 45^{\circ} =\frac{B C}{A B}\)

=\(\frac{20}{A B}\)

A B =20 m

In \(\triangle A B D\),

⇒ \(\tan 60^{\circ}=\frac{B D}{A B} \quad \Rightarrow \sqrt{3}=\frac{B D}{20}\)

B D=20 \(\sqrt{3} m\)

B C+C D=20 \(\sqrt{3}\)

20+C D=20 \(\sqrt{3}\)

C D=20\((\sqrt{3}-1) \mathrm{m}\)

Height of transmission tower =20\((\sqrt{3}-1) \mathrm{m}\)

Trigonometry Exemplar Solutions Class 10

Question 8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Solution:

Given

A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45°.

Let AB be the statue of height 1.6 m at the top of pedestal BC.

⇒ \(\angle B D C =45^{\circ}\)

and \(\angle A D C =60^{\circ}\)

Let C D =x

and BC =h

In \(\triangle B C D\),

Applications Of Trigonometry The Height Of The Pedestal Of The Statue

⇒ \(\tan 45^{\circ} =\frac{B C}{C D}\)

1 =\(\frac{h}{x}\)

h =x (1)

In ACD.

⇒ \(\tan 60^{\circ} =\frac{A C}{C D}\)

⇒ \(\sqrt{3} =\frac{h+1.6}{x}\)

⇒ \(\sqrt{3} =\frac{h+1.6}{h}\) [from eqn. (1)]

⇒ \(\sqrt{3} h\) =h+1.6

h\((\sqrt{3}-1)\) =1.6

h =\(\frac{1.6}{\sqrt{3}-1}=\frac{1.6 \times(\sqrt{3}+1)}{3-1}\)

=0.8(1.732+1)=2.1856

Height of pedestal \(\approx 2.18 \mathrm{~m}\)

Question 9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building

Solution:

Given

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high

Let AB be the tower and CD be the building.

Applications Of Trigonometry The Angle Of Elevation Of The Top Of A Building From The Foot Of The Tower

Here, the height of Tower AB is 50 m

⇒ \(\angle A C B=60^{\circ}\),

⇒ \(\angle D B C=30^{\circ}\)

In \(\triangle A B C\),

⇒ \(\sqrt{3}=\frac{50}{B C}\)

⇒ \(\tan 60^{\circ}=\frac{A B}{B C}\)

B C=\(\frac{50}{\sqrt{3}}\)

In \(\triangle B C D\),

⇒ \(\tan 30^{\circ}=\frac{C D}{B C} \quad \Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{C D}{B C}\)

C D=\(\frac{B C}{\sqrt{3}}=\frac{50}{\sqrt{3} \times \sqrt{3}}=\frac{50}{3}\)

C D=16.67 m

Height of building =16.67 m

Question 10. Two poles of equal height are standing opposite each other on either side of the road, which is 80 m wide. them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the points from the poles.

Solution:

Given:

Two poles of equal height are standing opposite each other on either side of the road, which is 80 m wide. them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively.

Let two poles AB and CD of equal heights ‘h’ be on either side of a road 80 m broad.

Applications Of Trigonometry Two Poles Of Equal Heights Are Standing Opposite Each Other On Either Side Of The Road

At point E,

Given : \(\angle C E D=60^{\circ}\) and \(\angle A E B=30^{\circ}\)

Let D E=x

B E = 80-x

In \(\triangle C D E\),

⇒ \(\tan 60^{\circ} =\frac{C D}{D E} \quad \Rightarrow \quad \sqrt{3}=\frac{h}{x}\)

h = \(x\sqrt{3}\) Equation (1)

In \(\triangle A B E\)

⇒ \(\tan 30^{\circ}=\frac{A B}{B E} \quad \Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{80-x}\)

⇒ \(\frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{80-x}\) [from Equation (1)]

3 \(\mathrm{r}=80-x \Rightarrow 4 x=80\)

x = 20

80-x=80-20=60 and h=20 \(\sqrt{3}\)

Height of each pole =20 \(\sqrt{3} \mathrm{~m}\)

Distance of two poles from point E=20 m and 60 m.

Question 11. A TV tower stands vertically on the bank of an A canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point D 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.

Applications Of Trigonometry The Height Of The Tower And The Width Of The Canal

Solution:

Given

A TV tower stands vertically on the bank of an A canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point D 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°.

In \(\triangle B C\).

⇒ \(\tan 60^{\circ} =\frac{A B}{B C}\)

⇒ \(\sqrt{3} =\frac{A B}{B C}\)

⇒ \(A B =\sqrt{3} \cdot B C\)

In \(\triangle A B D\),

⇒ \(\tan 30^{\circ} =\frac{A B}{B D}\)

⇒ \(\frac{1}{\sqrt{3}} =\frac{\sqrt{3} B C}{B C+C D}\)

3 BC =B C+C D

2 BC =20

BC =10

Put in equation (1),

A B =\(10 \sqrt{3} \mathrm{~m}\)

Height of tower =10 \(\sqrt{3} \mathrm{~m}\)

and width of canal =10 m

Question 12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Solution :

Let CD be a building of height 7m and AB be a cable tower.

Given :

⇒ \(\angle A D E=60^{\circ}\) and \(\angle D B C=45^{\circ}\)

Applications Of Trigonometry The Height Of The Tower From The Top Of A High Building

In \(\triangle B C D\),

⇒ \(\tan 45^{\circ} =\frac{D C}{B C} \Rightarrow 1=\frac{7}{B C}\)

B C = 7 m

In \(\triangle A D E\),

⇒ \(\tan 60^{\circ}=\frac{A E}{D E} \Rightarrow \sqrt{3}=\frac{A E}{B C} \quad(D E=B C)\)

⇒ \(A E=\sqrt{3} B C=1.732 \times 7=12.124 \mathrm{~m}\)

⇒ \(A B=A E+B E=12.124+7=19.124 \mathrm{~m}\)

Height of tower =19.124 m

Question 13. As observed from the top of a 75 m high lighthouse from the sea level, the angles of depression of the two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships

Solution :

Given

As observed from the top of a 75 m high lighthouse from the sea level, the angles of depression of the two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse

Let AB be a lighthouse whose height is 75 m. The position of the two ships is at C and D.

Applications Of Trigonometry The Distance Between The Two Ships

In \(\triangle A B C\),

⇒ \(\tan 45^{\circ} =\frac{A B}{A C}\)

1 =\(\frac{75}{A C} \Rightarrow A C=75 \mathrm{~m}\)

In \(\triangle A B D\),

⇒ \(\tan 30^{\circ}=\frac{A B}{A D} \Rightarrow \frac{1}{\sqrt{3}}=\frac{75}{A D}\)

⇒ \(A D=75 \sqrt{3} \Rightarrow C D+A C=75 \sqrt{3}\)

⇒ \(C D=75 \sqrt{3}-75=75(\sqrt{3}-1)\)

Distance between two ships =\(75(\sqrt{3}-1)\) m

Question 14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

Applications Of Trigonometry The Angle Of Elevation Of The Balloon From The Eyes OF The Girl

Solution:

Given

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After elevation reduces to 30°.

Let C be the position of the girl. The two positions of the balloon are A and P.

PD = AB = 88.2 – 1.2 = 87 m

In right \(\triangle A B C\),

Applications Of Trigonometry The Distance Travelled By The Balloon During The Interval

⇒ \(\tan 60^{\circ} =\frac{A B}{B C}\)

⇒ \(\sqrt{3}=\frac{87}{B C} \quad \Rightarrow B C=\frac{87}{\sqrt{3}}\)  → Equation 1

In right \(\triangle PDC\),

⇒ \(\tan 30^{\circ}=\frac{P D}{C D}\)

⇒ \(\frac{1}{\sqrt{3}} =\frac{87}{C D} \quad \Rightarrow C D=87 \sqrt{3}\)

Now, BD = C D – B C = 87

⇒ \(\sqrt{3}-\frac{87}{\sqrt{3}}=87\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)\)

=87 \(\times \frac{3-1}{\sqrt{3}}=\frac{2 \times 87}{\sqrt{3}} \mathrm{~m}\)

= \(\frac{2 \times 87}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \times 87 \times \sqrt{3}}{3}\)

= 58 \(\sqrt{3} \mathrm{~m}\)

Therefore, distance between two positions of balloons =58 \(\sqrt{3} m\)

Question 15. Question 15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

Solution :

Given

A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°.

Let the height of the tower be AB and the two positions of the car be C and D.

Applications Of Trigonometry The Time Taken By The Car To Reach The Foot Of The Tower

⇒ \(\angle D B C=\angle D B X-\angle C B X=60^{\circ}-30^{\circ}=30^{\circ}\)

In \(\triangle B D C\),

⇒ \(\angle D B C =\angle D C B\)

C D =B D

⇒ \(\left({cach} 30^{\circ}\right)\)

(the sides opposite to equal angles are equal) In right \(\triangle B A D\),

⇒ \(\cos 60^{\circ}=\frac{A D}{D B} \Rightarrow \frac{1}{2}=\frac{A D}{D B} \Rightarrow D B=2 A D\)

CD = 2 AD

Now, time taken to cover distance CD = 6 sec.

Time taken to cover distance 2AD = 6 sec.

Time is taken to cover distance AD = 3 sec.

Class 10 Trigonometry Word Problems with Answers

Question 16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

Solution :

Given

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary.

Let AB be a tower of height h. Two points C and D are at 4 m and 9 m distances respectively from B.

Let, \(\angle A D C=\theta\)

Applications Of Trigonometry The Angles Of Elevation Of The Top Of Tower From Two Points At A Distance

⇒ \(\angle A C B=90^{\circ}-\theta\)

In \(\triangle A B D\),

⇒ \(\tan \theta=\frac{A B}{B D}=\frac{h}{9}\)  → Equation 1

In \(\triangle A B C\),

⇒ \(\tan \left(90^{\circ}-\theta\right)=\frac{A B}{B C}\)

⇒ \(\cot \theta=\frac{h}{4}\)

⇒ \(\frac{1}{\tan \theta}=\frac{h}{4} \quad \Rightarrow \frac{9}{h}=\frac{h}{4}\) [from equation 1 ]

⇒ \(h^2=36 \quad \Rightarrow h=6\)

Height of tower =6 m

Hence Proved.

NCERT Exemplar For Class 10 Maths Chapter 8 Introduction To Trigonometry

NCERT Exemplar For Class 10 Maths Chapter 8  Introduction To Trigonometry

The word ‘trigonometry’ is derived from the Greek words: trigonon and metron. The word trigonon means a figure formed by three sides i.e., triangle, and metron means a measure. So, we can say that in trigonometry we solve the problems related to the sides and angles of a triangle.

NCERT Exemplar Solutions for Class 10 Maths Chapter 8 Introduction To Trigonometry

NCERT Exemplar Class 10 Maths Chapter 8 Solutions

NCERT Exemplar For Class 10 Maths Chapter 8  Identity

  1. An equation is a statement of equality between two expressions that is true for all values of the variable involved (taking into consideration the domain i.e., limitations of the variable), and is called an identity.
  2. An equation that involves trigonometric ratios of an angle and is true for all values of the angle is called a trigonometric identity.

NCERT Exemplar Class 10 Maths Chapter 8 Solutions

Read and Learn More Class 10 Maths Solutions Exemplar

NCERT Exemplar For Class 10 Maths Chapter 8  Angle

An angle is considered as a figure obtained by rotating a given ray about its endpoint. The measure of an angle is the amount of rotation from its initial side to the terminal side. If the ray rotates in an anticlockwise direction then the angle will be positive. If the ray rotates in a clockwise direction then the angle will be negative.

Trigonometry An Angle Is Obtained A Given Ray

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometric Ratios

The ratio of any two sides of a right-angled triangle is called trigonometric ratio. In the adjoining figure, \(\angle\)YAX = 0 is an acute angle. Consider a point C on ray AY. Draw perpendicular CB from C to AX.

⇒ \(\triangle\) ABC is a right-angled triangle in which

Trigonometry The Ratio Of Sides Of A Right Angle Triangle

⇒ \(\angle\)ABC = 90°

In \(\triangle\) ABC, let \(\angle\)BAC = 0

For \(\angle\)BAC = \(\theta\),

perpendicular P = BC

base B = AB

And hypotenuse H = AC

The ratio \(\frac{\text { perpendicular }}{\text { hypotenuse }}\) is called the sine of \(\theta\) and is written as \(\sin \theta\).

⇒ \(\sin \theta=\frac{P}{H}=\frac{B C}{A C}\)

The ratio \(\frac{\text { base }}{\text { hypotenuse }}\) is called the cosine of \(\theta\) and is written as \(\cos \theta\).

⇒ \(\cos \theta=\frac{B}{H}=\frac{A B}{A C}\)

The ratio \(\frac{\text { perpendicular }}{\text { base }}\) is called the tangent of \(\theta\) and is written as \(\tan \theta\).

∴ \(\tan \theta=\frac{P}{B}=\frac{B C}{A B}\)

Introduction to Trigonometry

The ratio \(\frac{\text { base }}{\text { perpendicular }}\) is called the cotangent of \(\theta\) and is written as \(\cot \theta\).

⇒ \(\cot \theta=\frac{B}{P}=\frac{A B}{B C}\)

The ratio \(\frac{\text { hypotenuse }}{\text { base }}\) is called the secant of \(\theta\) and is written as \(\sec \theta\).

⇒ \(\sec \theta=\frac{H}{B}=\frac{A C}{A B}\)

The ratio \(\frac{\text { hypotenuse }}{\text { perpendicular }}\) is called the cosecant of \(\theta\) and is written as \(cosec\theta\).

cosec \(\theta=\frac{H}{P}=\frac{A C}{B C}\)

Therefore, \(\sin \theta=\frac{1}{{cosec} \theta}=\frac{\text { perpendicular }}{\text { hypotenuse }}\), cosec \(\theta=\frac{1}{\sin \theta}=\frac{\text { hypotenuse }}{\text { perpendicular }}\)

⇒ \(\cos \theta=\frac{1}{\sec \theta}=\frac{\text { base }}{\text { hypotenuse }}\), \(\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hypotenuse }}{\text { base }}\)

⇒ \(\tan \theta=\frac{1}{\cot \theta}=\frac{\sin \theta}{\cos \theta}=\frac{\text { perpendicular }}{\text { base }}\), \(\cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}=\frac{\text { base }}{\text { perpendicular }}\)

Remember :

  •  \(\sin \theta \neq \sin \times \theta\)
  • \(\cos \theta \neq \cos \times \theta\)
  • \(\sin ^2 \theta =(\sin \theta)^2 \neq \sin ^2 \theta^2 \neq \sin ^2\)
  • \(cosec \theta =\frac{1}{\sin \theta}=(\sin \theta)^{-1} \neq \sin ^{-1} \theta\)

NCERT Exemplar For Class 10 Maths Chapter 8  Perpendicular, Base, And Hypotenuse In A Right-Angled Triangle

See carefully the following right-angled triangles :

Trigonometry The Values Of Trigonometric Ratio In The Different Angles

Let us see the values of trigonometric ratios in the different figures in terms of AB, BC, and AC.

Remember:

  1. The side of the triangle at which the right angle (90°) and the given angle lie, is called the base.
  2.  The side opposite to the 90° angle is called the hypotenuse.
  3. The third remaining side is called the perpendicular.

Now,

In (1). \(\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{A B}{B C}\)

In (2). \(\tan \theta=\frac{\text { perpendicular }}{\text { base }}=\frac{A C}{A B}\)

In (3). \(\sec \theta=\frac{\text { hypotenuse }}{\text { base }}=\frac{B C}{A C}\)

In (4). cosec \(\theta=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}\)

In (5). \(\cos \theta=\frac{\text { base }}{\text { hypotenuse }}=\frac{A C}{A B}\)

NCERT Exemplar For Class 10 Maths Chapter 8  Solved Examples

Example 1. In \(\triangle\) ABC, \(\angle\) B = 90°, if AB = 5 cm, BC = 12 cm, then find the values of the following :

  1. sin A
  2. cos A
  3. cot A
  4. cosec C
  5. sec C
  6. tan C

Solution.

In \(\triangle\) A B C, from Pythagoras theorem

⇒ \(A C^2=A B^2+B C^2 =5^2+12^2\)

Trigonometry In Triangle ABC Form Pythagoras Theorem

=25+144=169

A C=13 cm

For \(\angle\) A, the base is AB, perpendicular is BC. For \(\angle C\), the base is BC, the perpendicular is AB, while the hypotenuse is the same i.e., AC for both angles.

  1. \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{12}{13}\)
  2. \(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{5}{13}\)
  3. \(\cot A=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\frac{5}{12}\)
  4. cosec C=\(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{A B}=\frac{13}{5}\)
  5. \(\sec C=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{B C}=\frac{13}{12}\)
  6.  \(\tan C=\frac{\text { perpendicular }}{\text { base }}=\frac{A B}{B C}=\frac{5}{12}\)

Question 2. In \(\triangle\) ABC, \(\angle B=90^{\circ}\) and \(\sin A=\frac{4}{5}\), then find the values of all other trigonometric ratios for \(\angle\) A.

Solution:

We know that, \(\sin A=\frac{4}{5}=\frac{\text { perpendicular }}{\text { hypotenuse }}\)

Now construct a \(\triangle\) A B C in which

Trigonometry In Triangle ABC The Values Of All Other Trigonometric Ratio

⇒ \(\angle B=90^{\circ}\), B C=4 k and A C=5 k .

In \(\triangle\) A B C, from Pythagoras theorem

⇒ \(A B^2+B C^2=A C^2\)

⇒ \(A B^2=A C^2-B C^2=(5 k)^2-(4 k)^2\)

=25 \(k^2-16 k^2=9 k^2\)

AB = 3k

Now,\(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{3 k}{5 k}=\frac{3}{5}\)

⇒ \(\tan A=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}=\frac{4 k}{3 k}=\frac{4}{3}\)

cosec A=\(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{A C}{B C}=\frac{5 k}{4 k}=\frac{5}{4}\)

⇒ \(\sec A=\frac{\text { hypotenuse }}{\text { base }}=\frac{A C}{A B}=\frac{5 k}{3 k}=\frac{5}{3}\)

∴ \(\cot A=\frac{\text { base }}{\text { perpendicular }}=\frac{A B}{B C}=\frac{3 k}{4 k}=\frac{3}{4}\)

Example 3. In \(\triangle\) PQR, \(\angle R=90^{\circ}\) and \(\tan \theta=\frac{5}{12}\) where \(\angle\) QPR = \(\theta\). Find the values of all other trigonometric ratios for \(\angle \theta\).

Solution:

We know that,

⇒ \(\tan \theta=\frac{\text { perpendicular }}{\text { base }}=\frac{5}{12}\)

Trigonometry The Values Of Trigonometric Ratio For Theta

Now, construct a \(\triangle P Q R\) in which

P R=12 k, Q R=5 k and \(\angle Q R P=90^{=}\). }

Let \(\angle Q P R=\theta\)

In \(\triangle\) PQR,

From Pythagoras theorem

⇒ \(P Q^2=P R^2+Q R^2=(12 k)^2+(5 k)^2=144 k^2+25 k^2=169 k^2\)

PQ = 13k

Now,\(\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{Q R}{P Q}=\frac{5 k}{13 k}=\frac{5}{13}\)

⇒ \(\cos \theta=\frac{\text { base }}{\text { hypotenuse }}=\frac{P R}{P Q}=\frac{12 k}{13 k}=\frac{12}{13}\)

⇒ \(cosec 0 =\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{P(2}{Q R}=\frac{13 k}{5 k}=\frac{13}{5}\)

⇒ \(\sec \theta =\frac{\text { hypotenuse }}{\text { base }}=\frac{P Q}{P R}=\frac{13 k}{12 k}=\frac{13}{12}\)

⇒ \(\cot \theta =\frac{\text { basse }}{\text { perpendicular }}=\frac{P R}{Q R}=\frac{12 k}{5 k}=\frac{12}{5}\)

Example 4. In \(\triangle A B C\), \(\angle C=90^{\circ}\) and cosec A=\(\frac{13}{12}\) find the values of all other trigonometric ratios for \(\angle A\).

Solution:

We know that,

cosec A=\(\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{13}{12}\)

Now, construct a \(\triangle A B C\) in which A B=13 k, B C=12 k and \(\angle A C B=90^{\circ}\).

Trigonometry The Value Of Other Trigonometric Ratio For Angle A

In \(\triangle A B C\), from Pythagoras theorem

⇒ \(A C^2+B C^2 =A B^2\)

⇒ \(A C^2 =A B^2-B C^2=(13 k)^2-(12 k)^2\)

=\(169 k^2-144 k^2=25 k^2\)

AC = 5 k

Now, \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A B}=\frac{12 k}{13 k}=\frac{12}{13}\)

⇒ \(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{A C}{A B}=\frac{5 k}{13 k}=\frac{5}{13}\)

⇒ \(\tan A=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A C}=\frac{12 k}{5 k}=\frac{12}{5}\)

⇒ \(\sec A=\frac{\text { hypotenuse }}{\text { base }}=\frac{A B}{A C}=\frac{13 k}{5 k}=\frac{13}{5}\)

∴ \(\cot A=\frac{\text { base }}{\text { perpendicular }}=\frac{A C}{B C}=\frac{5 k}{12 k}=\frac{5}{12}\)

Class 10 Maths Trigonometry Questions with Answers

Example 5. If cos A=\(\frac{1}{3}\), then find the values of sin A and tan A

Solution:

Construct a right-angled triangle ABC in which cos A=\(\frac{1}{3}=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}\)

Let AB = k and AC = 3 k

From Pythagoras theorem,

Trigonometry The Values Of Sin A And Tan A

From Pythagoras theorem, \(B C^2+A B^2 =A C^2\)

⇒ \(B C^2 =A C^2-A B^2=(3 k)^2-(k)^2\)

= \(9 k^2-k^2=8 k^2\)

BC = \(\sqrt{8 k^2}=2 \sqrt{2} k\)

The values of sin A and tan A are

⇒ \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{2 \sqrt{2} k}{3 k}=\frac{2 \sqrt{2}}{3}\)

and \(\tan A=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}=\frac{2 \sqrt{2} k}{k}=2 \sqrt{2}\)

Example 6. In \(\triangle A B C\), \(\tan B=\sqrt{3}\) find the values of cosec B and cos B.

Solution:

Construct a right-angled triangle ABC in which

⇒ \(\tan B=\sqrt{3}=\frac{\sqrt{3}}{1}=\frac{\text { perpendicular }}{\text { base }}=\frac{A C}{A B}\)

Let \(A C=\sqrt{3}\) k and AB = k

From Pythagoras theorem

Trigonometry The Values Of Cosec B And Cos B

⇒ \(B C^2 =A B^2+A C^2\)

=\((k)^2+(\sqrt{3} k)^2\)

⇒ \(B C^2 =k^2+3 k^2=4 k^2\)

BC =2 k

The values of cosec B and cos B are

⇒ \(cosec B =\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{B C}{A C}=\frac{2 k}{\sqrt{3} k}=\frac{2}{\sqrt{3}}\)

and \(\cos B =\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{B C}=\frac{k}{2 k}=\frac{1}{2}\)

Introduction to Trigonometry Class 10 NCERT Exemplar

Example 7. If \(\cos \theta=\frac{4}{5}\), then find the value of \(\left(\sin \theta \cos \theta+\tan ^2 \theta\right) \)

Solution:

Given that, \(\cos \theta=\frac{4}{5}\)

Construct a right-angled \(\triangle A B C\) in which \(\angle B A C=90^{\circ}\), AC = 4 k and BC = 5k.

In \(\triangle ABC\),

Trigonometry Construction Of An Right Angle Triangle ABC

From Pythagoras theorem

⇒ \(A B^2+A C^2 =B C^2\)

⇒ \(A B^2 =B C^2-A C^2=(5 k)^2-(4 k)^2\)

= \(25 k^2-16 k^2=9 k^2\)

AB = 3k

and \(\sin \theta =\frac{A B}{B C}=\frac{3 k}{5 k}=\frac{3}{5}\)

⇒ \(\tan \theta =\frac{A B}{A C}=\frac{3 k}{4 k}=\frac{3}{4}\)

Now, \(\sin \theta \cos \theta+\tan ^2 \theta=\frac{3}{5} \cdot \frac{4}{5}+\left(\frac{3}{4}\right)^2=\frac{12}{25}+\frac{9}{16}\)

= \(\frac{192+225}{400}=\frac{417}{400}\)

The value of \(\left(\sin \theta \cos \theta+\tan ^2 \theta\right) \)= 417/400.

Example 8. If sec A=2, then find the value of \(\frac{1}{\cot A}+\frac{\cos A}{1+\sin A}\).

Solution:

Given that, \(\sec A=2=\frac{2}{1}\)

Construct a right-angled \(\triangle A B C\) in which

⇒ \(\angle A B C=90^{\circ}\), AB = k and AC = 2k .

In \(\triangle A B C\),

From Pythagoras theorem

Trigonometry Construction Of An Right Angle Triangle ABC From Pythagoras Theorem

⇒ \(A B^2+B C^2 = A C^2\)

⇒ \(B C^2 =A C^2-A B^2=(2 k)^2-(k)^2=4 k^2-k^2=3 k^2\)

⇒ \(B C=\sqrt{3} k\)

Now, \(\cot A=\frac{A B}{B C}=\frac{k}{\sqrt{3} k}=\frac{1}{\sqrt{3}}\)

⇒ \(\sin A=\frac{B C}{A C}=\frac{\sqrt{3} k}{2 k} =\frac{\sqrt{3}}{2}\) and \(\cos A=\frac{A B}{A C}=\frac{k}{2 k}=\frac{1}{2}\)

⇒ \(\frac{1}{\cot A}+\frac{\cos A}{1+\sin A}=\frac{1}{\frac{1}{\sqrt{3}}}+\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}=\sqrt{3}+\frac{\frac{1}{2}}{\frac{2+\sqrt{3}}{2}}\)

= \(\sqrt{3}+\frac{1 \times(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}=\sqrt{3}+\frac{2-\sqrt{3}}{4-3}\)

= \(\sqrt{3}+2-\sqrt{3}=2\)

The value of \(\frac{1}{\cot A}+\frac{\cos A}{1+\sin A}\) = 2

Example 9. If \(\cot A=\frac{b}{a}\), then prove that:

Solution:

⇒ \(\frac{a \sin A-b \cos A}{a \sin A+b \cos A}=\frac{a^2-b^2}{a^2+b^2}\)

We have,

L.H.S. =\(\frac{a \sin A-b \cos A}{a \sin A+b \cos A} =\frac{a \frac{\sin A}{\sin A}-b \frac{\cos A}{\sin A}}{a \frac{\sin A}{\sin A}+b \frac{\cos A}{\sin A}}\)

=\(\frac{a-b \cot A}{a+b \cot A}=\frac{a-b \times \frac{b}{a}}{a+b \times \frac{b}{a}}\) (dividing Nr. and Dr. by sin A ) (\(\cot A=\frac{b}{a}\))

=\(\frac{\frac{a^2-b^2}{a}}{\frac{a^2+b^2}{a}}=\frac{a^2-b^2}{a^2+b^2}\)= R.H.S

Hence Proved.

Example 10. In the adjoining figure, AM = BM and \(\angle B=90^{\circ}\). If \(\angle B C M=\theta\), then find the values of the following :

  1. sin θ
  2. tan θ
  3. sec θ

Solution:

In \(\triangle A B C\),

From Pythagoras theorem

Trigonometry In The Adjoining The Values Of Triangle ABC

⇒ \(B C^2 =A C^2-A B^2=b^2-(2 a)^2=b^2-4 a^2\)

⇒ \(B C =\sqrt{b^2-4 a^2}\)

Now, \(B M=\frac{A B}{2}=a\)

In \(\triangle B C M\),

From Pythagoras theorem

⇒ \(C M^2 =B C^2+B M^2=\left(b^2-4 a^2\right)+a^2=b^2-3 a^2\)

⇒ \(C M =\sqrt{b^2-3 a^2}\)

⇒ \(\sin \theta=\frac{B M}{C M}=\frac{a}{\sqrt{b^2-3 a^2}}\)

⇒ \(\tan \theta=\frac{B M}{B C}=\frac{a}{\sqrt{b^2-4 a^2}}\)

∴ \(\sec \theta=\frac{C M}{B C}=\frac{\sqrt{b^2-3 a^2}}{\sqrt{b^2-4 a^2}}\)

Example 11. In the adjoining figure, \(\angle B C D=\angle A D B(each 90^{\circ} )\). If B C=3 cm and the length of the side opposite \(\angle C\) in \(\triangle B C D\) is 5 cm, then find the square root of the length of the side opposite to \(\angle D\) in MDB.

Solution:

Draw DE \(\perp A B\)

In right \(\triangle B C D\), by Pythagoras theorem,

Trigonometry The Square Root Of Length Side Opposite

In right \(\triangle A E D\), by Pythagoras theorem,

⇒ \(A D^2=A E^2+D E^2\)

⇒ \(y^2=x^2+9\)

In right \(\triangle A D B\), by Pythagoras theorem,

Trigonometry In Right Triangle ADB By Pythagoras Theorem

⇒ \(A B^2=A D^2+D B^2\)

⇒ \((x+4)^2=y^2+25\)

⇒\(x^2+8 x+16=\left(x^2+9\right)+25\)

8 x=18

x=\(\frac{18}{8}=2.25 \mathrm{~cm}\)

⇒\(A B=x+4=2.25+4=6.25 \mathrm{~cm}\)

⇒\(\sqrt{A B}=\sqrt{6.25}=2.5 \mathrm{~cm}\)

Trigonometry Class 10 NCERT Exemplar Solutions

NCERT Exemplar For Class 10 Maths Chapter 8  Signs Of The Trigonometric Ratios

Let a rotating line rotate \(\angle XOA\) = \(\theta\) in an anticlockwise direction, starting from its initial position OX. Here, PM is perpendicular from P to OX where P is a point on side OA.

Trigonometry Signs Of The Trigonometric Ratios

In the first quadrant, 0 is the acute angle.

Here, OM > 0, PM > 0, OP > 0

Now,

⇒ \(\sin \theta=\frac{P M}{O P}>0\) ,\(\cos \theta=\frac{O M}{O P}>0\)

⇒ \(\tan \theta=\frac{P M}{O M}>0\) ,\(\cot \theta=\frac{O M}{P M}>0\)

⇒ \(\sec \theta=\frac{O P}{O M}>0 , cosec \theta=\frac{O P}{P M}>0\)

Therefore, all trigonometric ratios for all angles in the first quadrant are positive.

Trigonometric Ratios Of Specific Angles

1. Trigonometric Ratios for 30° and 60°

Trigonometry Trigonometric Ratios Of Specific Angles

⇒ \(\triangle ABC\) is an equilateral triangle whose side is ‘2a’.

⇒ \(\triangle A B C\) is an equilateral triangle whose side is ‘ 2 a ‘.

⇒ \(\angle A B C=\angle A C B=\angle B A C=60^{\circ}\)

AD is perpendicular from A to BC.

and \(\angle BAD =\angle C A D=30^{\circ}\)

B D = CD = a.

In \(\triangle A B D\), from Pythagoras theorem

⇒ \(A D^2+B D^2=A B^2\)

⇒ \(A D^2+a^2 =(2 n)^2\)

⇒ \(A D^2 =3 a^2\)

A D =a \(\sqrt{3}\)

For \(30^{\circ}\), in \(\triangle A B D\)

Base AD = a \(\sqrt{3}\), perpendicular B D= a and hypotenuse AB = 2a

⇒ \(\sin 30^{\circ}=\frac{B D}{A B}=\frac{a}{2 a}=\frac{1}{2}\)

⇒ \(cosec 30^{\circ}=\frac{A B}{B D}=\frac{2 a}{a}=2\)

⇒ \(\cos 30^{\circ}=\frac{A D}{A B}=\frac{a \sqrt{3}}{2 a}=\frac{\sqrt{3}}{2}\)

⇒ \(\sec 30^{\circ}=\frac{A B}{A D}=\frac{2 a}{a \sqrt{3}}=\frac{2}{\sqrt{3}}\)

⇒ \(\tan 30^{\circ}=\frac{B D}{A D}=\frac{a}{a \sqrt{3}}=\frac{1}{\sqrt{3}}\)

⇒ \(\cot 30^{\circ}=\frac{A D}{B D}=\frac{a \sqrt{3}}{a}=\sqrt{3}\)

For \(60^{\circ}\), in \(\triangle A B D\)

⇒ \(\sin 60^{\circ}=\frac{A D}{A B}=\frac{a \sqrt{3}}{2 a}=\frac{\sqrt{3}}{2}\)

⇒ \(\cos 60^{\circ}=\frac{B D}{A B}=\frac{a}{2 a}=\frac{1}{2}\)

⇒ \(\tan 60^{\circ}=\frac{A D}{B D}=\frac{a \sqrt{3}}{a}=\sqrt{3}\)

⇒ \(cosec 60^{\circ}=\frac{A B}{A D}=\frac{2 a}{a \sqrt{3}}=\frac{2}{\sqrt{3}}\)

⇒ \(\sec 60^{\circ}=\frac{A B}{B D}=\frac{2 a}{a}=2\)

⇒ \(\cot 60^{\circ}=\frac{B D}{A D}=\frac{a}{a \sqrt{3}}=\frac{1}{\sqrt{3}}\)

2. Trigonometric Ratios for 450

In \(\triangle\)ABC, \(\angle\)ABC = 90° and \(\angle\)BAC = 45°.

Trigonometry Ratios Of 45 Degrees

Therefore, \(\angle\)ACB = 45°

Let AB = BC = a

From Pythagoras theorem

In \(\triangle A B C\), \(\angle A B C=90^{\circ}\) and \(\angle B A C=45^{\circ}\). Therefore, \(\angle A C B=45^{\circ}\)

Let AB = BC = a

From Pythagoras theorem

⇒ \(A C^2 =A B^2+B C^2\)

=\( a^2+a^2=2 a^2\)

A C =a \(\sqrt{2}\)

For A=\(45^{\circ}\),

⇒ \(\sin 45^{\circ}=\frac{B C}{A C}=\frac{a}{a \sqrt{2}}=\frac{1}{\sqrt{2}}\)

⇒ \(cosec 45^{\circ}=\frac{A C}{B C}=\frac{a \sqrt{2}}{a}=\sqrt{2}\)

⇒ \(\cos 45^{\circ}=\frac{A B}{A C}=\frac{a}{a \sqrt{2}}=\frac{1}{\sqrt{2}}\)

⇒ \(\sec 45^{\circ}=\frac{A C}{A B}=\frac{a \sqrt{2}}{a}=\sqrt{2}\)

⇒ \(\tan 45^{\circ}=\frac{B C}{A B}=\frac{a}{a}\)=1

⇒ \(\cot 45^{\circ}=\frac{A B}{B C}=\frac{a}{a}=1\)

3. Trigonometric Ratios for 0°

Trigonometry Ratio For Zero

In \(\triangle \)ABC, \(\angle\)BAC = 0 and \(\angle\)ABC = 90°.

For angle \(\theta\), base = AB, perpendicular = BC and hypotenuse = AC.

In \(\triangle\)ABC, it is clear that as the value of ‘\(\theta\)’ decreases, the length of BC decreases, and for 0 = 0°, BC = 0 and AC = AB. Therefore,

Introduction to Trigonometry

⇒ \(\sin 0^{\circ}=\frac{B C}{A C}=\frac{0}{A C}=0\)

⇒ \(cosec 0^{\circ}=\frac{A C}{B C}=\frac{A C}{0}=\infty\)

⇒ \(\cos 0^{\circ}=\frac{A B}{A C}=\frac{A B}{A B}=1\)

⇒ \(\sec 0^{\circ}=\frac{A C}{A B}=\frac{A B}{A B}=1\)

⇒ \(\tan 0^{\circ}=\frac{B C}{A B}=\frac{0}{A B}=0\)

⇒ \(\cot 0^{\circ}=\frac{A B}{B C}=\frac{A B}{0}=\infty\)

4. Trigonometric Ratios for 90°

In \(\triangle\)ABC, it is clear that as the value of ‘0’ increases, the length of AB decreases, and for 0 = 90°, AB = 0 and AC = BC.

Trigonometry Ratio For 90 Degrees

Therefore, \(\sin 90^{\circ}=\frac{B C}{A C}=\frac{A C}{A C}=1\)

⇒ \(cosec 90^{\circ}=\frac{A C}{B C}=\frac{B C}{B C}=1\)

⇒ \(\cos 90^{\circ}=\frac{A B}{A C}=\frac{0}{A C}=0 \sec 90^{\circ}=\frac{A C}{A B}=\frac{A C}{0}=\infty\)

∴ \(\tan 90^{\circ}=\frac{B C}{A B}=\frac{B C}{0}=\infty \cot 90^{\circ}=\frac{A B}{B C}=\frac{0}{B C}=0\)

Trigonometry Values Of Trigonometric Ratios

Class 10 Maths Trigonometry Exemplar Questions

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometry Solved Examples

Example 1. Evaluate : \(\sin ^2 60^{\circ} \tan 45^{\circ}-\cos ^2 45^{\circ} \sec 60^{\circ}\)

Solution:

We know that,

⇒ \(\sin 60^{\circ}=\frac{\sqrt{3}}{2}, \tan 45^{\circ}=1, \cos 45^{\circ}=\frac{1}{\sqrt{2}}, \sec 60^{\circ}=2\)

⇒ \(\sin ^2 60^{\circ} \tan 45^{\circ} -\cos ^2 45^{\circ} \sec 60^{\circ} \)

= \(\left(\frac{\sqrt{3}}{2}\right)^2(1)-\left(\frac{1}{\sqrt{2}}\right)^2(2)=\frac{3}{4}-\frac{1}{2} \times 2=\frac{3}{4}-1=\frac{3-4}{4}=-\frac{1}{4}\)

\(\sin ^2 60^{\circ} \tan 45^{\circ}-\cos ^2 45^{\circ} \sec 60^{\circ}\) = -1/4.

Example 2. Evaluate : \(\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}\)

Solution:

We know that,

⇒ \(\cos 60^{\circ} =\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\frac{1}{2}\)

⇒ \(\cos 60^{\circ} \cos 30^{\circ}+ \sin 60^{\circ} \sin 30^{\circ}\)

= \(\frac{1}{2} \times \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \times \frac{1}{2}=\frac{\sqrt{3}+\sqrt{3}}{4}=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}\)

\(\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}\) = 1/2

Example 3. Show that : \(\cos 60^{\circ}=2 \cos ^2 30^{\circ}-1\)

Solution:

L.H.S. =\(\cos 60^{\circ}=\frac{1}{2}\)

R.H.S. = \(2 \cos ^230^{\circ}-1=2\left(\frac{\sqrt{3}}{2}\right)^2-1=2\left(\frac{3}{4}\right)-1=\frac{3}{2}-1\)

=\(\frac{3-2}{2}=\frac{1}{2}\)

L.H.S. = R.H.S. Hence Proved

Example 4. If \(A=15^{\circ}\), then find the value of \(\sec 2 A\).

Solution: 

A =\(15^{\circ} \Rightarrow 2 A=2 \times 15^{\circ}=30^{\circ} \)

⇒ \(\sec 2 A =\sec 30^{\circ}=\frac{2}{\sqrt{3}}\)

The value of \(\sec 2 A\) =\( \frac{2}{\sqrt{3}}\)

Example 5. If \(\sin x=1\), then find the value of \(\tan \frac{x}{3}\).

Solution:

⇒ \(\sin x =1\)

⇒ \(\sin x =\sin 90^{\circ} \Rightarrow x =90^{\circ}\)

⇒ \(\frac{x}{3} =\frac{90^{\circ}}{3}=30^{\circ}\)

∴ \(\tan \frac{x}{3}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}\)

The value of \(\tan \frac{x}{3}\) =[latec]\frac{1}{\sqrt{3}}[/latex]

Example 6. If \(\sin (A+B)=\frac{\sqrt{3}}{2}\) and \(\cos (A-B)=\frac{\sqrt{3}}{2}\), then find the values of A and B Given that, \(\sin (A+B)=\frac{\sqrt{3}}{2}\)

Solution:

⇒ \(\sin (A+B)=\sin 60^{\circ} \quad \Rightarrow \quad A+B=60^{\circ}\) Equation 1

and \(\cos (A-B)=\frac{\sqrt{3}}{2}\)

⇒ \(\cos (A-B)=\cos 30^{\circ} \quad \Rightarrow \quad A-B=30^{\circ}\) Equation 2

Adding equations (1) and (2)

⇒ \(A+B =60^{\circ}\)

2 A =\(90^{\circ} \quad\Rightarrow \quad A-B =30^{\circ} \)

A = \(45^{\circ}\)

Put A=\(60^{\circ}\) in equation (1)

⇒ \(45^{\circ}+B=60^{\circ} \quad \Rightarrow \quad B=60^{\circ}-45^{\circ}=15^{\circ}\)

The values of A and B are

⇒ \(A=45^{\circ}\) and \(B=15^{\circ}\)

NCERT Exemplar Class 10 Trigonometry Problems

Example 7.  In an acute-angled AABC, if tan (A + B – C) = 1 and see (B + C – A) = 2, then find the value of cos (45 – 3A).

Solution:

Solution. We have.

tan (A + B – C) = 1 = tan 45°

=* A + B- C = 45° …(1)

Also sec (B + C – A) = 2 = sec 60°

B + C – A = 60° …(2)

Adding equations (1) and (2), we get

25 = 105° ⇒ 5 = 52.5° …(3)

Subtracting equation (1) from equation (2), we get

2C – 2A = 15° ⇒ C-A = 7.5° …(4)

We know that A + 5 + C = 180°

⇒ A + C = 180° – 52.5° [from (3)]

⇒ A + C= 127.5° …(5)

⇒ -A + C = 7.5° …(4)

Adding equations (4) and (5), we get

2C = 135° ⇒ C = 67.5°

A = 127.5°-67.5° = 60°

cos (45 – 3A) = cos (4 x 52.5° – 3 x 60°) = cos (210° – 180°) = cos 30° = \(\frac{\sqrt{3}}{2}\)

The value of cos (45 – 3A) = \(\frac{\sqrt{3}}{2}\)

Example 8. If sin A= cos A, then evaluate \(\tan A+\sin ^2 A+1\).

Solution:

We know that, in A = cos A, then

Now, A =\(45^{\circ}\)

⇒ \(\tan A+\sin ^2 A+1 =\tan 45^{\circ}+\sin ^2 45^{\circ}+1\)

= \(1+\left(\frac{1}{\sqrt{2}}\right)^2+1=2+\frac{1}{2}=\frac{5}{2}\)

\(\tan A+\sin ^2 A+1\) = \(\frac{5}{2}\)

Example 9. Find the value of \(\left(\theta_1+\theta_2\right)\) if

Solution:

⇒ \(\tan \left(\theta_1+\theta_2\right)=\frac{\tan \theta_1+\tan \theta_2}{1-\tan \theta_1 \cdot \tan \theta_2}\)

where, \(\tan \theta_1=\frac{1}{2}\) and \(\tan \theta_2=\frac{1}{3}\).

⇒ \(\tan \left(\theta_1+\theta_2\right) =\frac{\tan \theta_1+\tan \theta_2}{1-\tan \theta_1 \cdot \tan \theta_2}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \times \frac{1}{3}}\)

= \(\frac{\frac{3+2}{6}}{1-\frac{1}{6}}=\frac{\frac{5}{6}}{\frac{5}{6}}=1=\tan 45^{\circ}\)

∴ \(\theta_1+\theta_2 =45^{\circ}\)

The value of \(\left(\theta_1+\theta_2\right)\) = 45°

Example 10. Evaluate : cos 1° cos 2° cos 3° … cos 179°

Solution:

cos 90° whose value is zero lies in between cos 1° cos 2° cos 3°.., cos 179°

cos 1° cos 2° cos 3°… cos 179°

= cos 1° cos 2° cos 3° …. cos 90° cos 179°

= cos 1° cos 2° cos 3° …. X 0 X cos 179°

= 0 (0 x finite number = 0)

cos 1° cos 2° cos 3° … cos 179° = 0

Question 11. In the adjoining figure, a right-angled triangle $A B C$ is shown in which AM = CM = 3 m. If \(\angle A C M=15^{\circ}\), then find A C:

Solution:

Here, AM = CM

⇒ \(\angle A C M = \angle C A M\) (opposite angles of equal sides)

Trigonometry In Adjoining A Right Angled Triangle ABC

⇒ \(\angle C A M=15^{\circ}\)

⇒ \(\angle A C B=90^{\circ}-15^{\circ}=75^{\circ}\)

and \(\angle B C M=\angle A C B-\angle A C M=75^{\circ}-15^{\circ}=60^{\circ}\)

In \(\triangle B C M\),

⇒ \(\cos (\angle B C M)=\frac{B C}{C M}\)

⇒ \(\cos 60^{\circ}=\frac{B C}{3}\)

⇒ \(\frac{1}{2}=\frac{B C}{3}\)

⇒ \(B C=\frac{3}{2} \mathrm{~m}\)

and \(\sin (\angle B C M)=\frac{B M}{C M}\)

⇒ \(\sin 60^{\circ}=\frac{B M}{3}\)

⇒ \(\frac{\sqrt{3}}{2}=\frac{B M}{3}\)

⇒ \(B M=\frac{3 \sqrt{3}}{2} \mathrm{~m}\)

⇒ \(A B=A M+B M=\left(3+\frac{3 \sqrt{3}}{2}\right) \mathrm{m}\)

Now, in \(\triangle A B C\), from Pythagoras theorem

⇒ \(A C^2 =A B^2+B C^2=\left(3+\frac{3 \sqrt{3}}{2}\right)^2+\left(\frac{3}{2}\right)^2=9+\frac{27}{4}+9 \sqrt{3}+\frac{9}{4}\)

= \(18+9 \sqrt{3}=9(2+\sqrt{3})=\frac{9}{2}(4+2 \sqrt{3})\)

AC =\(\sqrt{\frac{9(4+2 \sqrt{3})}{2}}=\frac{3(\sqrt{3}+1)}{\sqrt{2}} \mathrm{~m}\)

Class 10 Chapter 8 Maths Solutions NCERT Exemplar

NCERT Exemplar For Class 10 Maths Chapter 8  Relation Between Trigonometric Ratios

1. \(\sin \theta \times cosec\theta=1\)

  • \(\sin \theta=\frac{1} {cosec \theta}\)
  • \(cosec \theta=\frac{1}{\sin \theta}\)

2. \(\cos \theta \times \sec \theta=1\)

  •  \(\cos \theta=\frac{1}{\sec \theta}\)
  •  \(\sec \theta=\frac{1}{\cos \theta}\)

3. \(\tan \theta \times \cot \theta=1\)

  • \(\tan \theta=\frac{1}{\cot \theta}\)
  •  \(\cot \theta=\frac{1}{\tan \theta}\)

4. \(\tan \theta=\frac{\sin \theta}{\cos \theta}\)

5. \(\cot \theta=\frac{\cos \theta}{\sin \theta}\)

If the value of a trigonometric function is known, then we can find the values of other trigonometric functions. We can use Pythagoras’ theorem and the above results for it.

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometric Identities

We know about the algebraic equations.

The algebraic equation satisfies a particular value of the variable but in trigonometry, the equation can satisfy all values of the variable, such equations are called trigonometric identities.

  1.  \(\sin ^2 \theta+\cos ^2 \theta=1\)
  2.  \(\sec ^2 \theta=1+\tan ^2 \theta\)
  3. \(cosec^2 \theta=1+\cot ^2 \theta\)

Identity 1. \(\sin ^2 \theta+\cos ^2 \theta\)=1

Proof : Let \(\triangle\)ABC is a right-angled triangle in which \(\angle\)ABC = 90°

Trigonometry Identities

Let \(\angle\)ACB = \(\theta\)

For this angle ‘\(\theta\)’

AB = perpendicular

BC = base

AC = hypotenuse

From Pythagoras theorem,

⇒ \(A B^2+B C^2=A C^2\)

Now,\(\sin \theta=\frac{A B}{A C}\) and \(\cos \theta=\frac{B C}{A C}\)

Divide each term in equation (1) by A C^2

⇒ \(\frac{A B^2}{A C^2}+\frac{B C^2}{A C^2}=\frac{A C^2}{A C^2}\)

⇒ \(\left(\frac{A B}{A C}\right)^2+\left(\frac{B C}{A C}\right)^2=1 \quad \Rightarrow \quad \sin ^2 \theta+\cos ^2 \theta\)=1

Identity 2. \(\sec ^2 \theta=1+\tan ^2 \theta\)

Proof: In \(\triangle M B C\),

⇒ \(A B^2+B C^2=A C^2\)

Now,\(\tan \theta=\frac{A B}{B C}\) and \(\sec \theta=\frac{A C}{B C}\)

Divide each term by \(B C^2\) in equation (1)

⇒ \(\frac{A B^2}{B C^2}+\frac{B C^2}{B C^2}=\frac{A C^2}{B C^2}\)

⇒ \(\left(\frac{A B}{B C}\right)^2+1=\left(\frac{A C}{B C}\right)^2 \Rightarrow \tan ^2 \theta+1=\sec ^2 \theta\)

Identity 3. \(cosec^2 \theta=1+\cot ^2 \theta\)

Proof : In \(\triangle A B C\),

⇒ \(A B^2+B C^2=A C^2\)

Now,\(\cot \theta=\frac{B C}{A B}\) and \(cosec \theta=\frac{A C}{A B}\)

Divide each term in equation (1) by \(A B^2\)

⇒ \(\frac{A B^2}{A B^2}+\frac{B C^2}{A B^2}=\frac{A C^2}{A B^2} \)

⇒ \(1+\left(\frac{B C}{A B}\right)^2=\left(\frac{A C}{A B}\right)^2 \Rightarrow 1+\cot ^2 \theta={cosec}^2 \theta\)

Alternate Proof: Identity (2) \(\sec ^2 \theta=1+\tan ^2 \theta\) and (3)\(cosec^2 \theta=1+\cot ^2 \theta\) can be proved with the help of identity (1) \(\sin ^2 \theta+\cos ^2 \theta\)=1.

Proof of \(\sec ^2 \theta=1+\tan ^2 \theta\) :

From identity (1)

⇒ \(\sin ^2 \theta+\cos ^2 \theta\)=1

Divide each term by \(\cos ^2 \theta\)

⇒ \(\frac{\sin ^2 \theta}{\cos ^2 \theta}+\frac{\cos ^2 \theta}{\cos ^2 \theta}=\frac{1}{\cos ^2 \theta}\)

⇒ \(left(\frac{\sin \theta}{\cos \theta})^2+1=\left(\frac{1}{\cos \theta}\right)^2\)

⇒ \(\tan ^2 \theta+1 =\sec ^2 \theta \Rightarrow \sec ^2 \theta=1+\tan ^2 \theta\)

Proof of \(cosec^2 \theta=1+\cot ^2 \theta\) :

From identity ( 1 ) \(\sin ^2 \theta+\cos ^2 \theta\)=1

Divide each term by \(\sin ^2 \theta\)

⇒ \(\frac{\sin ^2 \theta}{\sin ^2 \theta}+\frac{\cos ^2 \theta}{\sin ^2 \theta}=\frac{1}{\sin ^2 \theta}\)

⇒ \(1+\left(\frac{\cos \theta}{\sin \theta}\right)^2=\left(\frac{1}{\sin \theta}\right)^2\)

⇒ \(1+\cot ^2 \theta= cosec^2 \theta\)

∴ \(cosec^2 \theta=1+\cot ^2 \theta\)

Other Form of the Above Identities :

1. \(\sin ^2 \theta+\cos ^2 \theta=1\)

  • \(\cos ^2 \theta=1-\sin ^2 \theta\)
  •  \(\sin ^2 \theta=1-\cos ^2 \theta\)

2. \(\sec ^2 \theta=1+\tan ^2 \theta\)

  • \(\tan ^2 \theta=\sec ^2 \theta-1\)
  • \(\sec ^2 \theta-\tan ^2 \theta=1\)

3. \(cosec^2 \theta=1+\cot ^2 \theta\)

  •  \(\cot ^2 \theta= cosec^2 \theta-1\)
  •  \(cosec^2 \theta-\cot ^2 \theta\)=1

Class 10 Maths Chapter 8 Important Questions

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometric Solved Examples

Example 1. Simplify : \(\left(1+\tan ^2 \theta\right)(1-\sin \theta)(1+\sin \theta)\)

Solution:

⇒ \(\left(1+\tan ^2 \theta\right)(1-\sin \theta)(1+\sin \theta) \)

⇒ \(=\left(1+\tan ^2 \theta\right)\left[(1)^2-(\sin \theta)^2\right]=\left(1+\tan ^2 \theta\right)\left(1-\sin ^2 \theta\right)\)

= \(\sec ^2 \theta \cdot \cos ^2 \theta \quad \text { (using the identities } \sec ^2 \theta=1+\tan ^2 \theta \text { and } \sin ^2 \theta+\cos ^2 \theta=1 \text { ) }\)

= \(\frac{1}{\cos ^2 \theta} \cdot \cos ^2 \theta\)=1

\(\left(1+\tan ^2 \theta\right)(1-\sin \theta)(1+\sin \theta)\) = 1

Example 2. Prove that : \(\cos ^2 \theta \cdot cosec\theta+\sin \theta= cosec \theta\)

Solution:

L.H.S. =\(\cos ^2 \theta \cdot cosec \theta+\sin \theta=\cos ^2 \theta \cdot \frac{1}{\sin \theta}+\sin \theta\)

= \(\frac{\cos ^2 \theta}{\sin \theta}+\frac{\sin \theta}{1}=\frac{\cos ^2 \theta+\sin ^2 \theta}{\sin \theta}=\frac{1}{\sin \theta}\)

= cosec \(\theta\)= R.H.S.

\(\cos ^2 \theta \cdot cosec\theta+\sin \theta= cosec \theta\)

Question 3. Prove that : \(\sec ^4 \theta-\tan ^4 \theta=1+2 \tan ^2 \theta\)

Solution:

L.H.S. =\(\sec ^4 \theta-\tan ^4 \theta=\left(\sec ^2 \theta\right)^2-\left(\tan ^2 \theta\right)^2\)

=\(\left(\sec ^2 \theta+\tan ^2 \theta\right)\left(\sec ^2 \theta-\tan ^2 \theta\right)=\left(1+\tan ^2 \theta+\tan ^2 \theta\right)\left(1+\tan ^2 \theta-\tan ^2 \theta\right)\)

=\(\left(1+2 \tan ^2 \theta\right)(1)=1+2 \tan ^2 \theta= R.H.S\).

Hence Proved

\(\sec ^4 \theta-\tan ^4 \theta=1+2 \tan ^2 \theta\)

Question 4. Prove that : \(\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta+\sin \theta \cos \theta}=\cot \theta\)

Answer:

L.H.S. =\(\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta+\sin \theta \cos \theta}=\frac{\left(1-\sin ^2 \theta\right)+\cos \theta}{\sin \theta(1+\cos \theta)}=\frac{\cos ^2 \theta+\cos \theta}{\sin \theta(1+\cos \theta)}\)

=\(\frac{\cos \theta(\cos \theta+1)}{\sin \theta(1+\cos \theta)}=\frac{\cos \theta}{\sin \theta}=\cot \theta\)= R.H.S.

\(\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta+\sin \theta \cos \theta}=\cot \theta\)

Example 5. If \(\tan \theta=\frac{4}{3}\) , then find the value of \(\frac{3 \sin \theta-2 \cos \theta}{3 \sin \theta+5 \cos \theta}\) .

Solution:

⇒ \(\frac{3 \sin \theta-2 \cos \theta}{3 \sin \theta+5 \cos \theta}=\frac{3 \frac{\sin \theta}{\cos \theta}-2 \frac{\cos \theta}{\cos \theta}}{3 \frac{\sin \theta}{\cos \theta}+5 \frac{\cos \theta}{\cos \theta}}\)

=\(\frac{3 \tan \theta-2}{3 \tan \theta+5}=\frac{3 \times \frac{4}{3}-2}{3 \times \frac{4}{3}+5}=\frac{4-2}{4+5}=\frac{2}{9}\)

The value of \(\frac{3 \sin \theta-2 \cos \theta}{3 \sin \theta+5 \cos \theta}\) =\( \frac{2}{9}\)

Example 6. Prove that : \((\sec A+\tan A)(1-\sin A)=\cos A\)

Solution:

L.H.S. =\((\sec A+\tan A)(1-\sin A)\)

= \(\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)=\frac{(1+\sin A)}{\cos A}(1-\sin A)\)

= \(\frac{1-\sin ^2 A}{\cos A}=\frac{\cos ^2 A}{\cos A}=\cos A\) = R.H.S.

\((\sec A+\tan A)(1-\sin A)=\cos A\)

Example 7. Prove that : \({cosec A-\cot A=\frac{1}{cosec} A+\cot A}\)

Solution:

L.H.S. = \(cosec A-\cot A=(cosec A-\cot A) \cdot \frac{(cosec A+\cot A)}{(cosec A+\cot A)}\)

= \(\frac{cosec^2 A-\cot ^2 A}{cosec A+\cot A}=\frac{1}{cosec A+\cot A}\)= R.H.S.

Hence Proved.

\({cosec A-\cot A=\frac{1}{cosec} A+\cot A}\)

Example 8. Prove that: \(\frac{\sec A+1}{\tan A}=\frac{\tan A}{\sec A-1}\)

Solution:

L.H.S. =\(\frac{\sec A+1}{\tan A}=\frac{\sec A+1}{\tan A} \times \frac{\sec A-1}{\sec A-1}\)

[divide numerator and denominator by (sec A-1)]

= \(\frac{\sec ^2 A-1}{\tan A(\sec A-1)}=\frac{\tan ^2 A}{\tan A(\sec A-1)}\)

= \(\frac{\tan A}{\sec A-1}\)= R.H.S.

Hence Proved.

\(\frac{\sec A+1}{\tan A}=\frac{\tan A}{\sec A-1}\)

Example 9. Prove that : \(\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)= cosec \theta+\sec \theta\)

Solution:

L.H.S. =\(\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)\)

=\(\sin \theta(1+\tan \theta)+\cos \theta\left(1+\frac{1}{\tan \theta}\right)\)

= \(\sin \theta(1+\tan \theta)+\cos \theta\left(\frac{\tan \theta+1}{\tan \theta}\right)\)

=\((1+\tan \theta)\left[\sin \theta+\frac{\cos \theta}{\left(\frac{\sin \theta}{\cos \theta}\right)}\right]=(1+\tan \theta)\left(\sin \theta+\frac{\cos ^2 \theta}{\sin \theta}\right)\)

=\(\left(1+\frac{\sin \theta}{\cos \theta}\right)\left(\frac{\sin ^2 \theta+\cos ^2 \theta}{\sin \theta}\right)=\left(1+\frac{\sin \theta}{\cos \theta}\right)\left(\frac{1}{\sin \theta}\right)\)

⇒ \(=\frac{1}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}\)

= \(cosec \theta+\sec \theta\)= R.H.S.

\(\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)= cosec \theta+\sec \theta\)

Example 10. If \(\sec \theta+\tan \theta=p\),then prove that : \(\frac{p^2-1}{p^2+1}=\sin \theta\)

Solution:

L.H.S. =\(\frac{p^2-1}{p^2+1}=\frac{(\sec \theta+\tan \theta)^2-1}{(\sec \theta+\tan \theta)^2+1}=\frac{\sec ^2 \theta+\tan ^2 \theta+2 \sec \theta \tan \theta-1}{\sec ^2 \theta+\tan ^2 \theta+2 \sec \theta \tan \theta+1}\)

= \(\frac{\left(\sec ^2 \theta-1\right)+\tan ^2 \theta+2 \sec \theta \tan \theta}{\sec ^2 \theta+\left(\tan ^2 \theta+1\right)+2 \sec \theta \tan \theta}\)

= \(\frac{\tan ^2 \theta+\tan ^2 \theta+2 \sec \theta \tan \theta}{\sec ^2 \theta+\sec ^2 \theta+2 \sec \theta \tan \theta}\)

= \(\frac{2 \tan ^2 \theta+2 \sec \theta \tan \theta}{2 \sec ^2 \theta+2 \sec \theta \tan \theta}=\frac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\sec \theta+\tan \theta)}\)

= \(\frac{\tan \theta}{\sec \theta}=\frac{\sin \theta}{\cos \theta} \times \frac{\cos \theta}{1}\)

= \(\sin \theta\) = R.H.S.

Hence Proved

\(\frac{p^2-1}{p^2+1}=\sin \theta\)

Alternative Method : We have \(\sec \theta+\tan \theta=p\)

⇒ \(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=\frac{p}{1}\Rightarrow \quad \frac{1+\sin \theta}{\cos \theta}=\frac{p}{1}\)

Squaring both sides, we get

⇒ \(\frac{(1+\sin \theta)^2}{\cos ^2 \theta}=\frac{p^2}{1}\)

⇒ \(\frac{(1+\sin \theta)^2}{1-\sin ^2 \theta}=\frac{p^2}{1}\){ (using identity } \(\sin ^2 \theta+\cos ^2 \theta=1 \text { ) }\)

⇒ \(\frac{(1+\sin \theta)^2}{(1+\sin \theta)(1-\sin \theta)}=\frac{p^2}{1} \quad \Rightarrow \quad \frac{1+\sin \theta}{1-\sin \theta}=\frac{p^2}{1}\)

Applying component and dividends, we get

⇒ \(\frac{2}{2 \sin \theta}=\frac{p^2+1}{p^2-1}\)

∴ \(\frac{1}{\sin \theta}=\frac{p^2+1}{p^2-1} \Rightarrow \quad \sin \theta=\frac{p^2-1}{p^2+1}\)

Class 10 Trigonometry Questions with Solutions

Example 11. Prove that : \(\frac{\sec \theta+1-\tan \theta}{\tan \theta+1-\sec \theta}=\frac{\sin \theta}{1-\cos \theta}\)

Solution:

Note: In such type of questions, it is better to write \(\sec ^2 \theta-\tan ^2 \theta or cosec^2 \theta-\cot ^2 \theta\) in only numerator.

If in R.H.S. the single term in either numerator or denominator is \(sin \theta\) then convert the question in cosec \(\theta\) and cot \(\theta\) and if the single term is cos \(\theta\) then convert the question in see \(\theta\) and tan \(\theta\).

As in this question in R.H.S. single term \(sin \theta\) is in the numerator so we will use \(cosec^2 \theta-\cot ^2 \theta\) for 1.

(dividing Nr and Dr by \(\sin \theta\) to convert it in } \(cosec \theta and \cot \theta \text { ) }\)

= \(\frac{{cosec} \theta+\cot \theta-1}{1+\cot \theta-{cosec} \theta}=\frac{{cosec} \theta+\cot \theta-\left({cosec}^2 \theta-\cot ^2 \theta\right)}{1+\cot \theta-{cosec} \theta}\)

= \(\frac{({cosec} \theta+\cot \theta)-({cosec} \theta+\cot \theta)({cosec} \theta-\cot \theta)}{1+\cot \theta-{cosec} \theta} \)

= \(\frac{({cosec} \theta+\cot \theta)[1-{cosec} \theta+\cot \theta]}{1+\cot \theta-{cosec} \theta}={cosec} \theta+\cot \theta \)

= \(\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}=\frac{(1+\cos \theta)}{\sin \theta}=\frac{(1+\cos \theta)(1-\cos \theta)}{\sin \theta(1-\cos \theta)}\)

= \(\frac{1-\cos ^2 \theta}{\sin \theta(1-\cos \theta)}=\frac{\sin ^2 \theta}{\sin \theta(1-\cos \theta)}=\frac{\sin \theta}{1-\cos \theta}=\text { R.H.S. }\)

Hence Proved.

\(\frac{\sec \theta+1-\tan \theta}{\tan \theta+1-\sec \theta}=\frac{\sin \theta}{1-\cos \theta}\)

Example 12. If x=r \(\sin A \cos C\), y=r \(\sin A \sin C\) and z=r \(\cos A\), then prove that :

⇒ \(r^2=x^2+y^2+z^2\)

Solution:

Here, x=r sin A cos C, y=r sin A sin C and z=r cos A

Now, R.H.S. = \(x^2+y^2+z^2\)

= \((r \sin A \cos C)^2+(r \sin A \sin C)^2+(r \cos A)^2\)

= \(r^2 \sin ^2 A \cos ^2 C+r^2 \sin ^2 A \sin ^2 C+r^2 \cos ^2 A\)

= \(r^2 \sin ^2 A\left(\cos ^2 C+\sin ^2 C\right)+r^2 \cos ^2 A \quad\left(\cos ^2 C+\sin ^2 C=1\right)\)

= \(r^2 \sin ^2 A+r^2 \cos ^2 A\)

= \(r^2\left(\sin ^2 A+\cos ^2 A\right)\)

= \(r^2\) =L.H.S.

\(r^2=x^2+y^2+z^2\)

Hence Proved.

NCERT Exemplar For Class 10 Maths Chapter 8  Identities And Equations

Identities are special + type of equations that are true for all values of the variable while equations are true for some particular values of the variable.

NCERT Exemplar For Class 10 Maths Chapter 8  Solved Examples

Example 1. Check whether the equation \(\frac{\tan \phi+\sin \phi}{\tan \phi-\sin \phi}=\frac{\sec \phi+1}{\sec \phi-1}\) is an identity or not?

Solution:

L.H.S. = \(\frac{\tan \phi+\sin \phi}{\tan \phi-\sin \phi}=\frac{\frac{\sin \phi}{\cos \phi}+\sin \phi}{\frac{\sin \phi}{\cos \phi}-\sin \phi}\)

= \(\frac{\sin \phi \sec \phi+\sin \phi}{\sin \phi \sec \phi-\sin \phi}=\frac{\sin \phi(\sec \phi+1)}{\sin \phi(\sec \phi-1)}=\frac{\sec \phi+1}{\sec \phi-1}\)= R.H.S.

L.H.S. = R.H.S.

And this equation is true for all values of \phi.

The given equation is an identity.

Example 2. Check whether the following equation \(\tan ^4 \theta+\tan ^6 \theta=\tan ^3 \theta \sec ^2 \theta\) is an identity or not?

Solution:

Given equation,

⇒ \(\tan ^4 \theta+\tan ^6 \theta =\tan ^3 \theta \sec ^2 \theta\)

⇒ \(\tan ^4 \theta\left(1+\tan ^2 \theta\right) =\tan ^3 \theta \sec ^2 \theta\)

⇒ \(\tan ^4 \theta \sec ^2 \theta =\tan ^3 \theta \sec ^2 \theta\)

L.H.S. \(\neq\) R.H.S.

It is not an identity.

Again, \(\tan ^4 \theta \sec ^2 \theta-\tan ^3 \theta \sec ^2 \theta=0\)

⇒ \(\tan ^3 \theta \sec ^2 \theta(\tan \theta-1)\) =0

⇒ \(\tan ^3 \theta\)=0 or \(\sec ^2 \theta=0\) or \(\tan \theta-1\)=0

Therefore, given equation satisfies only for \(\theta=0^{\circ}\) and \(\theta=45^{\circ}\).

The given equation is not an identity.

Alternate Method : For \(\theta=60^{\circ}\)

L.H.S. =\(\tan ^4 60^{\circ}+\tan ^6 60^{\circ}\)

= \((\sqrt{3})^4+(\sqrt{3})^6=9+27=36\)

and R.H.S. =\(\tan ^3 60^{\circ} \cdot \sec ^2 60^{\circ}\)

= \((\sqrt{3})^3(2)^2=12 \sqrt{3}\)

L.H.S. \(\neq\) R.H.S.

The given equation is not an identity.

Example 3. Solve : \(2 \sin ^2 \theta=\frac{1}{2}, 0^{\circ}<\theta<90^{\circ}\)

Solution:

⇒ \(2 \sin ^2 \theta =\frac{1}{2}\)

⇒ \(\sin ^2 \theta =\frac{1}{2 \times 2}=\frac{1}{4}\)

⇒ \(\sin \theta =\sqrt{\frac{1}{4}}=\frac{1}{2}\)

⇒ \(\sin \theta =\sin 30^{\circ}\)

∴ \(\theta =30^{\circ}\)

Trigonometric Ratios Class 10 NCERT Exemplar

Example 4. Find the value of \(\theta if 2 \cos 3 \theta=1\) and \(0^{\circ}<\theta<90^{\circ}\).

Solution:

2 \(\cos 3 \theta\) =1

⇒ \(\cos 3 \theta =\frac{1}{2}\)

⇒ \(\cos 3 \theta =\cos 60^{\circ}\)

3 \(\theta =60^{\circ}\)

∴ \(\theta =20^{\circ}\)

The Value of θ = 20°

Example 5. Find the value of \(\theta\) if \(\sec ^2 \theta+\tan ^2 \theta=\frac{5}{3}\) and θ lies in first quadrant.

Solution:

⇒ \(\sec ^2 \theta+\tan ^2 \theta =\frac{5}{3}\)

⇒ \(1+\tan ^2 \theta+\tan ^2 \theta =\frac{5}{3} \quad \Rightarrow \quad 2 \tan ^2 \theta=\frac{5}{3}-1=\frac{2}{3}\)

⇒ \(\tan ^2 \theta=\frac{1}{3} \quad \Rightarrow \quad \tan ^2 \theta=\left(\frac{1}{\sqrt{3}}\right)^2\)

⇒ \(\tan \theta=\frac{1}{\sqrt{3}}\) (talking positive sign only)

⇒ \(\tan \theta=\tan 30^{\circ} \Rightarrow \theta=30^{\circ}\)

The value of \(\theta\) if \(\sec ^2 \theta+\tan ^2 \theta=\frac{5}{3}\) = 30°

Example 6. If \(0^{\circ}<\alpha<90^{\circ}\), then solve the equation \(\frac{\sin \alpha}{1-\cos \alpha}+\frac{\sin \alpha}{1+\cos \alpha}=4\).

solution:

⇒ \(\frac{\sin \alpha}{1-\cos \alpha}+\frac{\sin \alpha}{1+\cos \alpha} =4\)

⇒ \(\frac{\sin \alpha(1+\cos \alpha)+\sin \alpha(1-\cos \alpha)}{(1-\cos \alpha)(1+\cos \alpha)}=4\)

⇒ \(\frac{\sin \alpha+\sin \alpha \cos \alpha+\sin \alpha-\sin \alpha \cos \alpha}{1-\cos ^2 \alpha}\) =4

⇒ \(\frac{2 \sin \alpha}{\sin ^2 \alpha}\)=4

⇒ \(\frac{2}{\sin \alpha}\)=4

⇒ \(\sin \alpha =\frac{1}{2}=\sin 30^{\circ}\)

⇒ \(\alpha=30^{\circ}\)

Example 7. If \(0^{\circ}<\theta<90^{\circ}\), then find the value of \(\theta\) from the equation \(\frac{\cos ^2 \theta}{\cot ^2 \theta-\cos ^2 \theta}=3\)

Solution:

⇒ \(\frac{\cos ^2 \theta}{\cot ^2 \theta-\cos ^2 \theta}=3\)

⇒ \(\frac{\cos ^2 \theta}{\frac{\cos ^2 \theta}{\sin ^2 \theta}-\cos ^2 \theta}=3 \Rightarrow \frac{\cos ^2 \theta}{\cos ^2 \theta\left(\frac{1}{\sin ^2 \theta}-1\right)}=3\)

⇒ \(\frac{1}{\frac{1}{\sin ^2 \theta}-1}=3 \quad \Rightarrow \quad \frac{1}{\frac{1-\sin ^2 \theta}{\sin ^2 \theta}}=3\)

⇒ \(\frac{\sin ^2 \theta}{1-\sin ^2 \theta}=3 \quad \Rightarrow \quad \frac{\sin ^2 \theta}{\cos ^2 \theta}=3\)

⇒ \(\tan ^2 \theta=(\sqrt{3})^2\)

⇒ \(\tan \theta=\sqrt{3}\) (taking positive sign only)

⇒ \(\tan \theta=\tan 60^{\circ}\)

∴ \(\theta=60^{\circ}\)

The Value of θ = 60°

NCERT Exemplar For Class 10 Maths Chapter 8  Complementary Angles

Two angles are said to be complementary angles if their sum is 90°.

\(\theta\) and (90°- \(\theta\)) are complementary angles.

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometric Ratios Of Complementary Angles

Let a rotating ray rotate 90° in an anticlockwise direction from the initial position OX and reach OY and after this, it rotates ‘9’ angle in a clockwise direction and reaches the OA position.

⇒ \(\angle\)XOA = 90° – \(\theta\).

Now, P is a point on side OA. PM and PN are perpendiculars from P to OX and OY respectively.

⇒ \(\sin \left(90^{\circ}-\theta\right)=\frac{P M}{O P}=\frac{O N}{O P}=\cos \theta\)

⇒ \(\cos \left(90^{\circ}-\theta\right)=\frac{O M}{O P}=\frac{P N}{O P}=\sin \theta\)

⇒ \(\tan \left(90^{\circ}-\theta\right)=\frac{P M}{O M}=\frac{O N}{P N}=\cot \theta\)

⇒ \(\cot \left(90^{\circ}-\theta\right)=\frac{O M}{P M}=\frac{P N}{O N}=\tan \theta\)

⇒ \(\sec \left(90^{\circ}-\theta\right)=\frac{O P}{O M}=\frac{O P}{P N}= cosec \theta\)

⇒ \({cosec}\left(90^{\circ}-\theta\right)=\frac{O P}{P M}=\frac{O P}{O N}=\sec \theta\)

⇒ \(\sin \left(90^{\circ}-\theta\right)=\cos \theta\)

⇒ \(\cos \left(90^{\circ}-\theta\right)=\sin \theta\)

⇒ \(\tan \left(90^{\circ}-\theta\right)=\cot \theta\)

⇒ \(\cot \left(90^{\circ}-\theta\right)=\tan \theta\)

⇒ \(\sec \left(90^{\circ}-\theta\right)={cosec} \theta\)

⇒ \({cosec}\left(90^{\circ}-\theta\right)=\sec \theta\)

Trigonometry Trigonometric Ratios Of Complementary Angles

NCERT Exemplar For Class 10 Maths Chapter 8  Summary :

⇒ \(\sin \left(90^{\circ}-\theta\right)=\cos \theta\)

⇒ \(\cos \left(90^{\circ}-\theta\right)=\sin \theta\)

⇒ \(\tan \left(90^{\circ}-\theta\right)=\cot \theta\)

⇒ \(\cot \left(90^{\circ}-\theta\right)=\tan \theta\)

⇒ \(\sec \left(90^{\circ}-\theta\right)= cosec \theta\)

cosec\(\left(90^{\circ}-\theta\right)=\sec \theta\)

Trigonometric Ratios Class 10 NCERT Exemplar

NCERT Exemplar For Class 10 Maths Chapter 8  Solved Examples

Example 1. Evaluate the following :

  1. \(\frac{\sin 58^{\circ}}{\cos 32^{\circ}}\)
  2.  \(\frac{\sec 42^{\circ}}{{cosec} 48^{\circ}}\)

Solution:

  1.  \(\frac{\sin 58^{\circ}}{\cos 32^{\circ}}=\frac{\sin \left(90^{\circ}-32^{\circ}\right)}{\cos 32^{\circ}}=\frac{\cos 32^{\circ}}{\cos 32^{\circ}}\)=1
  2. \(\frac{\sec 42^{\circ}}{{cosec} 48^{\circ}}=\frac{\sec \left(90^{\circ}-48^{\circ}\right)}{{cosec} 48^{\circ}}=\frac{{cosec} 48^{\circ}}{{cosec} 48^{\circ}}\)=1

Example 2. Evaluate:

  1. \(\tan 42^{\circ}-\cot 48^{\circ}\)
  2. \(\sec 36^{\circ}- cosec 54^{\circ}\)

Solution:

(1)\(\tan 42^{\circ}-\cot 48^{\circ} =\tan 42^{\circ}-\cot \left(90^{\circ}-42^{\circ}\right)\)

=\(\tan 42^{\circ}-\tan 42^{\circ}\)=0

(2) \(\sec 36^{\circ}- cosec 54^{\circ}=\sec 36^{\circ}- cosec\left(90^{\circ}-36^{\circ}\right)\)

=\(\sec 36^{\circ}-\sec 36^{\circ}\)=0

Example 3. Prove that :

  1. \(\sin 42^{\circ} \cos 48^{\circ}+\sin 48^{\circ} \cos 42^{\circ}=1\)
  2.  \(\cos 70^{\circ} \cos 20^{\circ}-\sin 70^{\circ} \sin 20^{\circ}=0\)

Solution:

(1) L.H.S. =\(\sin 42^{\circ} \cos 48^{\circ}+\sin 48^{\circ} \cos 42^{\circ}\)

=\(\sin 42^{\circ} \cos \left(90^{\circ}-42^{\circ}\right)+\sin \left(90^{\circ}-42^{\circ}\right) \cos 42^{\circ}\)

= \(\sin 42^{\circ} \sin 42^{\circ}+\cos 42^{\circ} \cos 42^{\circ}\)

= \(\sin ^2 42^{\circ}+\cos ^2 42^{\circ}\)

= 1 = R.H.S.

Hence Proved.

(2) L.H.S. = cos 70° cos 20° – sin 70° sin 20°

= cos 70° cos 20° – sin (90° – 20°) sin(90° – 70°)

= cos 70° cos 20° – cos 20° cos 70°

= 0 = R.H.S.

Example 4. Without using trigonometric tables, evaluate :

⇒ \(\left(\frac{\tan 20^{\circ}}{{cosec} 70^{\circ}}\right)^2+\left(\frac{\cot 20^{\circ}}{\sec 70^{\circ}}\right)^2+2 \tan 15^{\circ} \tan 37^{\circ} \tan 53^{\circ} \tan 60^{\circ} \tan 75^{\circ}\)

Solutions:

⇒ \(\left(\frac{\tan 20^{\circ}}{{cosec} 70^{\circ}}\right)^2+\left(\frac{\cot 20^{\circ}}{\sec 70^{\circ}}\right)^2+2 \tan 15^{\circ} \tan 37^{\circ} \tan 53^{\circ} \tan 60^{\circ} \tan 75^{\circ}\)

= \(\left\{\frac{\tan 20^{\circ}}{{cosec}\left(90^{\circ}-20^{\circ}\right)}\right\}^2+\left\{\frac{\cot 20^{\circ}}{\sec \left(90^{\circ}-20^{\circ}\right)}\right\}^2\)

+2 \(\tan 15^{\circ} \tan 37^{\circ} \tan \left(90^{\circ}-37^{\circ}\right) \cdot(\sqrt{3}) \tan \left(90^{\circ}-15^{\circ}\right)\)

⇒ \(+2 \tan 15^{\circ} \tan 37^{\circ} \tan \left(90^{\circ}-37^{\circ}\right) \cdot(\sqrt{3}) \tan \left(90^{\circ}-15^{\circ}\right)\)

= \(\left(\frac{\tan 20^{\circ}}{\sec 20^{\circ}}\right)^2+\left(\frac{\cot 20^{\circ}}{{cosec} 20^{\circ}}\right)^2+2 \tan 15^{\circ} \tan 37^{\circ} \cot 37^{\circ} \cdot(\sqrt{3}) \cot 15^{\circ}\)

= \(\left(\frac{\sin 20^{\circ} / \cos 20^{\circ}}{1 / \cos 20^{\circ}}\right)^2+\left(\frac{\cos 20^{\circ} / \sin 20^{\circ}}{1 / \sin 20^{\circ}}\right)^2+2 \sqrt{3} \tan 15^{\circ} \tan 37^{\circ} \cdot \frac{1}{\tan 37^{\circ}} \cdot \frac{1}{\tan 15^{\circ}}\)

= \(\sin ^2 20^{\circ}+\cos ^2 20^{\circ}+2 \sqrt{3}=1+2 \sqrt{3}\)

Example 5. Without using trigonometric tables, evaluate the following :

⇒ \(\frac{{cosec}^2\left(90^{\circ}-\theta\right)-\tan ^2 \theta}{4\left(\cos ^2 48^{\circ}+\cos ^2 42^{\circ}\right)}-\frac{2 \tan ^2 30^{\circ} \sec ^2 52^{\circ} \sin ^2 38^{\circ}}{\left({cosec}^2 70^{\circ}-\tan ^2 20^{\circ}\right)}\)

Solution:

⇒ \(\frac{{cosec}^2\left(90^{\circ}-\theta\right)-\tan ^2 \theta}{4\left(\cos ^2 48^{\circ}+\cos ^2 42^{\circ}\right)}-\frac{2 \tan ^2 30^{\circ} \sec ^2 52^{\circ} \sin ^2 38^{\circ}}{\left({cosec}^2 70^{\circ}-\tan ^2 20^{\circ}\right)}\)

= \(\frac{\sec ^2 \theta-\tan ^2 \theta}{4\left\{\cos ^2\left(90^{\circ}-42^{\circ}\right)+\cos ^2 42^{\circ}\right)}-\frac{2\left(\frac{1}{\sqrt{3}}\right)^2 \sec ^2\left(90^{\circ}-38^{\circ}\right) \sin ^2 38^{\circ}}{{cosec}^2\left(90^{\circ}-20^{\circ}\right)-\tan ^2 20^{\circ}}\)

= \(\frac{1}{4\left(\sin ^2 42^{\circ}+\cos ^2 42^{\circ}\right)}-\frac{2{cosec}^2 38^{\circ} \cdot \sin ^2 38^{\circ}}{3\left(\sec ^2 20^{\circ}-\tan ^2 20^{\circ}\right)}\)

= \(\frac{1}{4}-\frac{2{cosec}^2 38^{\circ} \times \frac{1}{{cosec}^2 38^{\circ}}}{3}=\frac{1}{4}-\frac{2}{3}=\frac{-5}{12}\)

Example 6. Prove that :

  1. \(\sin \left(40^{\circ}-\theta\right)-\cos \left(50^{\circ}+\theta\right)\)=0
  2. \(\sec \left(65^{\circ}+\theta\right)-{cosec}\left(25^{\circ}-\theta\right)\)=0

Solution:

(1) L.H.S. =\(\sin \left(40^{\circ}-\theta\right)-\cos \left(50^{\circ}+\theta\right)\)

=\(\sin \left\{90^{\circ}-\left(50^{\circ}+\theta\right)\right\}-\cos \left(50^{\circ}+\theta\right)\)

=\(\cos \left(50^{\circ}+\theta\right)-\cos \left(50^{\circ}+\theta\right)\)=0= R.H.S.

(2) L.H.S. =\(\sec \left(65^{\circ}+0\right)- {cosec}\left(25^{\circ}-\theta\right)\)

=\(\sec \left\{90^{\circ}-\left(25^{\circ}-0\right)\right\}-{cosec}\left(25^{\circ}-\theta\right)\)

=\({cosec}\left(25^{\circ}-\theta\right)- {cosec}\left(25^{\circ}-\theta\right)\)=0= R.H.S.

Trigonometry Class 10 Extra Questions and Solutions

Example 7. Express each of the following in terms of trigonometric ratios of angles between 0° and 45°.

  1. sin 70° + sec 70°
  2.  tan 65° + cosec 65°
  3. cos 81° + cot 80°

Solution:

  1. sin 70° + sec 70° = sin (90° – 20°) + sec (90° – 20°) = cos 20° + cosec 20°
  2. tan 65° + cosec 65° = tan (90° – 25°) + cosec (90° – 25°) = cot 25° + sec 25°
  3. cos 81° + cot 80° = cos (90° – 9°) + cot (90° -10°) = sin 9° + tan 10°

Example 8. If sin 3A = cos (A – 26°) where 3A is an acute angle, then find the value of A

Solution:

Given that,

sin 3A = cos (A – 26°).

cos (90° – 3A) = cos (A – 26°) ⇒ 90° – 3A =A – 26°

⇒ -471=-116° ⇒ A =29°

The value of A =29°

Example 9. If sin (\(\theta\)+ 24°) = cos \(\theta\) and \(\theta\) + 24° is an acute angle, then find the value of \(\theta\).

Solution:

Given that,

sin (\(\theta\)+ 24°) = cos \(\theta\)

⇒ sin (\(\theta\) + 24°) = sin (90° – \(\theta\))

⇒ \(\theta\) + 24° = 90° – \(\theta\)

⇒ 2\(\theta\) = 66°

∴ \(\theta\)= 33°

The value of θ = 33°

Example 10. If A, B, C are the angles of \(\triangle\) M B C, show that \(\sin \frac{B+C}{2}=\cos \frac{A}{2}\).

Solution:

In \(\triangle\) A B C,

A+B+C=\(180^{\circ}\)

B+C=\(180^{\circ}-A\)

⇒ \(\frac{B+C}{2}=90^{\circ}-\frac{A}{2}\)

⇒ \(\sin \frac{B+C}{2}=\sin \left(90^{\circ}-\frac{A}{2}\right)\)

⇒ \(\sin \frac{B+C}{2}=\cos \frac{A}{2}\)

Example 11. If \(\sin 36^{\circ}\)=p, then find \(\sin 54^{\circ}\) in terms of p.

Solution: 

We have, \(\sin 36^{\circ}\)=p

⇒ \(\sin ^2 36^{\circ}=p^2 \quad \Rightarrow \quad 1-\cos ^2 36^{\circ}=p^2\)

⇒ \(\cos ^2 36^{\circ}=1-p^2 \quad \Rightarrow \quad \cos ^2\left(90^{\circ}-54^{\circ}\right)=1-p^2\)

⇒ \(\sin ^2 54^{\circ}=1-p^2\)

∴ \(\sin 54^{\circ}=\sqrt{1-p^2}\)(taking only positive sign as \(54^{\circ}\) lies in 1 quadrant)

Example 12. If \(\tan 1^{\circ} \tan 2^{\circ} \tan 3^{\circ} \tan 4^{\circ} \ldots \tan 89^{\circ}=x^2-8\), then find the value of x .

Solution:

⇒ \(x^2-8=\left(\tan 1^{\prime \prime} \tan 89^{\circ}\right)\left(\tan 2^{\prime \prime} \tan 88^{\circ}\right)\left(\tan 3^{\circ} \tan 87^{\circ}\right) \ldots\left(\tan 44^{\circ} \tan 46^{\circ}\right) \tan 45^{\circ}\)

⇒ \(\left.=\left[\tan 1^{\circ} \tan \left(90^{\circ}-1^{\circ}\right)|| \tan 2^{\circ \prime} \tan \left(90^{\circ}-2^{\circ}\right)\right] \mid \tan 3^{\circ} \tan \left(90^{\circ}-3^{\circ}\right)\right]\) … \(\left|\tan 44^{\circ} \tan \left(90^{\circ}-44^{\circ}\right)\right| \times 1\)

=\(\left(\tan 1^{\prime \prime} \cot 1^{\circ}\right)\left(\tan 2^{\circ} \cot 2^{\circ}\right)\left(\tan 3^{\circ} \cot 3^{\circ}\right) \ldots\left(\tan 44^{\circ} \cot 44^{\circ}\right)\)

=\(1 \times 1 \times 1 \times \ldots \times 1 \quad(\tan x \cdot \cot x=\tan x \cdot \frac{1}{\tan x}=1). \)

⇒ \(x^2-8\)=1

⇒ \(x^2=9 \quad \Rightarrow \quad x= \pm 3\)

The value of  \( \quad x= \pm 3\)

NCERT Class 10 Maths Trigonometry Important Questions

NCERT Exemplar For Class 10 Maths Chapter 8  Introduction Of Trigonometry Exercise 8.1

Question 1. In \(\triangle A B C\), right-angled at B, AB = 24 cm, BC = 7 cm. Determine :

  1. sin A, cos A
  2. sin C, cos C

Solution :

In \(\triangle A B C\),

Trigonometry In Triangle ABC, Right Angled At B

AB = 24 cm, BC = 7 cm and \(\angle B=90^{\circ}\)

From Pythagoras theorem,

⇒ \(A C^2 =A B^2+B C^2=24^2+7^2\)

=576+49=625

AC = 25 cm

(1) \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{7}{25}\)

⇒ \(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{24}{25}\)

(2) \(\sin C=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{24}{25}\).

⇒ \(\cos C=\frac{\text { base }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{7}{25}\).

Question 2. In figure, find \(\tan P-\cot R\),

Solution :

In \(\triangle\) PQR,

Trigonometry The Value Of Tan P - Cot R

⇒ \(P Q^2+Q R^2 =P R^2\)

⇒ \(Q R^2 =P R^2-P Q^2\)

⇒ \(Q R^2 =(13)^2-(12)^2\)

=169-144=25 \(\Rightarrow Q R=5 \mathrm{~cm}\)

Now, \(\tan P=\frac{\text { perpendicular }}{\text { base }}=\frac{5}{12}\)

⇒ \(\cot R=\frac{\text { base }}{\text { perpendicular }}=\frac{5}{12}\)

∴ \(\tan P-\cot R=\frac{5}{12}-\frac{5}{12}=0\)

\(\tan P-\cot R\) = 0

Question 3. If \(\sin A=\frac{3}{4}\), calculate cos A and tan A.

Solution :

⇒ \(\sin A=\frac{3}{4}\)

In \(\triangle A B C\),

Trigonometry The Value Of Cos A And Tan A

Let BC = 3k

and AC = 4k

⇒ \(A B^2+B C^2 =A C^2\)

⇒ \(A B^2 =A C^2-B C^2\)

⇒ \(A C^2 =(4 k)^2-(3 k)^2\)

= \(16 k^2-9 k^2=7 k^2\)

A B = \(\sqrt{7} k\)

Now, \(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{\sqrt{7} k}{4 k}=\frac{\sqrt{7}}{4}\)and \(\tan A=\frac{\text { perpendicular }}{\text { base }}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}\)

Question 4. Given 15 cotA = 8, find sin A and Sec A.

Solution :

⇒ \(15 \cot A=8 \Rightarrow \cot A=\frac{8}{15}\)

Trigonometry The Value Of Sin A And Sec A

Let base =8 k=A B

and Perpendicular =15 k=B C

In \(\triangle A B C\),

⇒ \(A C^2=A B^2+B C^2\)

= \((8 k)^2+(15 k)^2\)

= \(64 k^2+225 k^2=289 k_A^2\)

AC = 17 k

Now, \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}\)

= \(\frac{B C}{A C}=\frac{15 k}{17 k}=\frac{15}{17}\)

and \(\sec A=\frac{\text { hypotenuse }}{\text { base }}\)

= \(\frac{A C}{A B}=\frac{17 k}{8 k}=\frac{17}{8}\)

Question 5. Given \(\sec \theta=\frac{13}{12}\), calculate all other trigonometric ratios.

Solution :

⇒ \(\sec \theta=\frac{13}{12}\)

Introduction to Trigonometry

⇒ \(\sec \theta=\frac{\text { hypotenuse }}{\text { base }}=\frac{13}{12}\)

Let, in \(\triangle A B C\), \(\angle B=90^{\circ}\) and \(\angle A=\theta\)

Let, A C=13 k and A B=12 k

Now, \(A B^2+B C^2=A C^2\)

⇒ \(B C^2 =A C^2-A B^2=(13 k)^2-(12 k)^2\)

= \(169 k^2-144 k^2=25 k^2\)

BC = 5 k

Now, \(\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{5 k}{13 k}=\frac{5}{13}\)

⇒ \(\cos \theta=\frac{\text { base }}{\text { hypotenuse }}=\frac{12 k}{13 k}=\frac{12}{13}\)

⇒ \(\tan \theta=\frac{\text { perpendicular }}{\text { base }}=\frac{5 k}{12 k}=\frac{5}{12}\)

cosec \(\theta=\frac{\text { hypotenuse }}{\text { perpendicular }}=\frac{13 k}{5 k}=\frac{13}{5}\)

∴ \(\cot \theta=\frac{\text { base }}{\text { perpendicular }}=\frac{12 k}{5 k}=\frac{12}{5}\)

Question 6. If \(\angle A\) and \(\angle B\) are acute angles such that \(\cos A=\cos B\), then show that \(\angle A=\angle B\).

Solution :

Let, in \(\triangle A B C, \angle C=90^{\circ}\)

Trigonometry The Acute Angles Of Triangle ABC

⇒ \(\angle A\) and \(\angle B\) are acute angles.

Given,\(\cos A=\cos B\)

Question 7. If \(\cot \theta=\frac{7}{8}\), evaluate :

  1.  \(\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}\),
  2. \(\cot ^2 \theta\)

Solution :

⇒ \(\cot \theta=\frac{7}{8}\)

Trigonometry In Triangle ABC The Value Of Cot

⇒ \(\cot \theta=\frac{\text { base }}{\text { perpendicular }}=\frac{7}{8}\)

Let, in \(\triangle A B C\), \(\angle B=90^{\circ}\) and \(\angle A=\theta\)

Let base AB = 7k

and perpendicular BC = 8k

Now, \(A C^2=A B^2+B C^2\)

=\((7 k)^2+(8 k)^2\)

=\(49 k^2+64 k^2=113 k^2\)

A C =\(\sqrt{113} k\)

Now, \(\sin \theta=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}\)

=\(\frac{8 k}{\sqrt{113 k}}=\frac{8}{\sqrt{113}}\)

and \(\cos \theta=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}\)

= \(\frac{7 k}{\sqrt{113 k}}=\frac{7}{\sqrt{113}}\)

(1) \(\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}\)

= \(\frac{\left(1+\frac{8}{\sqrt{113}}\right)\left(1-\frac{8}{\sqrt{113}}\right)}{\left(1+\frac{7}{\sqrt{113}}\right)\left(1-\frac{7}{\sqrt{113}}\right)}\)

= \(\frac{(1)^2-\left(\frac{8}{\sqrt{113}}\right)^2}{(1)^2-\left(\frac{7}{\sqrt{113}}\right)^2}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}\)

= \(\frac{113-64}{113-49}=\frac{49}{64}\)

(2) \(\cot ^2 \theta=\left(\frac{7}{8}\right)^2=\frac{49}{64}\)

Question 8. If \(3 \cot A=4\), check whether \(\frac{\left(1-\tan ^2 A\right)}{\left(1+\tan ^2 A\right)}=\cos ^2 A-\sin ^2 A\) or not.

Solution :

3 cot A=4

⇒ \(\cot A=\frac{4}{3}\)

Now, \(\cot A=\frac{\text { base }}{\text { perpendicular }}=\frac{4}{3}\)

Trigonometry In Triangle ABC The Value Of Cos

In \(\triangle A B C, \angle B =90^{\circ}\)

base A B =4 k, perpendicular B C = 3 k

⇒ \(A C^2 =A B^2+B C^2=(4 k)^2+(3 k)^2\)

= \(16 k^2+9 k^2=25 k^2\)

A C = 5 k

Now, \(\tan A=\frac{\text { perpendicular }}{\text { base }}=\frac{B C}{A B}=\frac{3 k}{4 k}=\frac{3}{4}\)

⇒ \(\cos A=\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{4 k}{5 k}=\frac{4}{5}\)

⇒ \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{3 k}{5 k}=\frac{3}{5}\)

Now, \( \frac{1-\tan ^2 A}{1+\tan ^2 A}=\frac{1-\left(\frac{3}{4}\right)^2}{1+\left(\frac{3}{4}\right)^2}\)

= \(\frac{1-\frac{9}{16}}{1+\frac{9}{16}}=\frac{16-9}{16+9}=\frac{7}{25}\)

and \(\cos ^2 A-\sin ^2 A=\left(\frac{4}{5}\right)^2-\left(\frac{3}{5}\right)^2\)

=\(\frac{16}{25}-\frac{9}{25}=\frac{16-9}{25}=\frac{7}{25}\)

∴ \(\frac{1-\tan ^2 A}{1+\tan ^2 A}=\cos ^2 A-\sin ^2 A\)

Question 9. In triangle ABC, right-angled at B, if \(\tan A=\frac{1}{\sqrt{3}}\), find the value of:

  1. \(\sin A \cos C+\cos A \sin C\)
  2.  \(\cos A \cos C-\sin A \sin C\)

Solution :

In \(\triangle A B C, \angle B=90^{\circ}\)

Trigonometry In Triangle ABC, Right Angled At B Of Tan A

⇒ \(\tan A=\frac{1}{\sqrt{3}}\)

⇒ \(\tan A =\frac{\text { perpendicular }}{\text { base }}\)

= \(\frac{1}{\sqrt{3}}\)

Let perpendicular B C = k and base \(A B=k \sqrt{3}\)

Now, \(A C^2 =A B^2+B C^2=(k \sqrt{3})^2+k^2\)

= \(3 k^2+k^2=4 k^2\)

A C = 2 k

Now, \(\sin A=\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{k}{2 k}=\frac{1}{2}\)

⇒ \(\cos A =\frac{\text { base }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}\)

⇒ \(\sin C =\frac{\text { perpendicular }}{\text { hypotenuse }}=\frac{A B}{A C}\)

= \(\frac{k \sqrt{3}}{2 k}=\frac{\sqrt{3}}{2}\)

⇒ \(\cos C=\frac{\text { base }}{\text { hypotenuse }}=\frac{B C}{A C}=\frac{k}{2 k}=\frac{1}{2}\)

(1) \(\sin A \cos C+\cos A \sin C =\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\)

= \(\frac{1}{4}+\frac{3}{4}=1\)

(2) \(\cos A \cos C-\sin A \sin C=\frac{\sqrt{3}}{2} \times \frac{1}{2}-\frac{1}{2} \times \frac{\sqrt{3}}{2}=0\)

Class 10 Chapter 8 Trigonometry NCERT Book with Answers

Question 10. In \(\triangle\) PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P, and tan P.

Solution :

In \(\triangle P Q R\), \(\angle Q=90^{\circ}\)

and P Q =5 cm

P R+Q R =25  → Equation 1

Now, \(P R^2=P Q^2+Q R^2\)

Trigonometry The Values OF Sin P, Cos P, Tan P

⇒ \(P R^2-Q R^2=P Q^2\)

⇒ \((P R-Q R)(P R+Q R) =5^2\)

⇒ \((P R-Q R) \times 25 =2\)

P R-Q R =1  → Equation 2

Adding equations (1) and (2),

2 \(\cdot P R=26 \quad \Rightarrow \quad P R=13\)

From equation (1)

Now, Q R =25-P R=25-13=12

⇒ \(\sin P =\frac{Q R}{P R}=\frac{12}{13}\)

⇒ \(\cos P =\frac{P Q}{P R}=\frac{5}{13}\)

∴ \(\tan P =\frac{Q R}{P Q}=\frac{12}{5}\)

Question 11. State whether the following are true or false. Justify your answer.

  1. The value of tan A is always less than 1.
  2.  sec A = \(\frac{12}{5}\) for some value of angle A.
  3. cos A is the abbreviation used for the cosecant of angle A.
  4. cot A is the product of cot and A.
  5. \(\sin \theta=\frac{4}{3}\) for some angle \(\theta\).

Solution :

(1) False, \(\tan A=\frac{\text { perpendicular }}{\text { base }}\)

tan A < l is possible only when the perpendicular is smaller the base but it is not always necessary, hypotenuse

(2) True, sec A=\(\frac{\text { hypotenuse }}{\text { base }}\)

Hypotenuse is always greater than the base.

Therefore, sec A = \(\frac{12}{5}\), is true tor some angle A

(3) False, cos A, is the brief form of the cosine of \(\angle\)A

Class 10 Trigonometry NCERT Book with Solutions

NCERT Exemplar For Class 10 Maths Chapter 8  Introduction To Trigonometry Exercise 8.2

Question 1. Evaluate the following :

  1.  \(\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}\)
  2.  \(2 \tan ^2 45^{\circ}+\cos ^2 30^{\circ}-\sin ^2 60^{\circ}\)
  3. \(\frac{\cos 45^{\circ}}{\sec 30^{\circ}+{cosec} 30^{\circ}}\)
  4.  \(\frac{\sin 30^{\circ}+\tan 45^{\circ}-{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}\)
  5. \(\frac{5 \cos ^2 60^{\circ}+4 \sec ^2 30^{\circ}-\tan ^2 45^{\circ}}{\sin ^2 30^{\circ}+\cos ^2 30^{\circ}}\)

Solution :

(1) \(\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}\)

=\(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}\)

=\(\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1\)

(2) \(2 \tan ^2 45^{\circ}+\cos ^2 30^{\circ}-\sin ^2 60^{\circ}\)

=\(2(1)^2+\left(\frac{\sqrt{3}}{2}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2\)

=\(2+\frac{3}{4}-\frac{3}{4}=2\)

(3) \(\frac{\cos 45^{\circ}}{\sec 30^{\circ}+{cosec} 30^{\circ}}\)

=\(\frac{1 / \sqrt{2}}{\frac{2}{\sqrt{3}}+\frac{2}{1}}\)

⇒ \(=\frac{1}{\sqrt{2}\left(\frac{2+2 \sqrt{3}}{\sqrt{3}}\right)}\)

⇒ \(=\frac{\sqrt{3}}{2 \sqrt{2}(\sqrt{3}+1)}\)

= \(\frac{\sqrt{3} \cdot \sqrt{2}(\sqrt{3}-1)}{2 \sqrt{2}(\sqrt{3}+1) \cdot \sqrt{2}(\sqrt{3}-1)}\)

= \(\frac{\sqrt{2}(3-\sqrt{3})}{2 \cdot 2(3-1)}=\frac{3 \sqrt{2}-\sqrt{6}}{8}\)

(4) \(\frac{\sin 30^{\circ}+\tan 45^{\circ}-{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}\)

= \(\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}\)

= \(\frac{\frac{\sqrt{3}+2 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{4+\sqrt{3}+2 \sqrt{3}}{2 \sqrt{3}}}=\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4}\)

= \(\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4} \times \frac{3 \sqrt{3}-4}{3 \sqrt{3}-4}\)

= \(\frac{27+16-24 \sqrt{3}}{(3 \sqrt{3})^2-(4)^2}\)

= \(\frac{43-24 \sqrt{3}}{27-16}\)

= \(\frac{43-24 \sqrt{3}}{11}\)

(5) \(\frac{5 \cos ^2 60^{\circ}+4 \sec ^2 30^{\circ}-\tan ^2 45^{\circ}}{\sin ^2 30^{\circ}+\cos ^2 30^{\circ}}\)

=\(\frac{5\left(\frac{1}{2}\right)^2+4\left(\frac{2}{\sqrt{3}}\right)^2-(1)^2}{\left(\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}\)

=\(\frac{\frac{5}{4}+4 \times \frac{4}{3}-1}{\frac{1}{4}+\frac{3}{4}}=\frac{\frac{15+64-12}{12}}{1}=\frac{67}{12}\)

Question 2. Choose the correct option and justify your choice :

(1) \(\frac{2 \tan 30^{\circ}}{1+\tan ^2 30^{\circ}}\)= ?

  1. \(\sin 60^{\circ}\)
  2. \(\cos 60^{\circ}\)
  3. \(\tan 60^{\circ}\)
  4. \(\sin 30^{\circ}\)

(2) \(\frac{1-\tan ^2 45^{\circ}}{1+\tan ^2 45^{\circ}}=\) ?

  1. \(\tan 90^{\circ}\)
  2. 1
  3. \(\sin 45^{\circ}\)
  4. 0

(3) \(\sin 2 A=2 \sin A\) is true when A=

  1. \(0^{\circ}\)
  2. \(30^{\circ}\)
  3. \(45^{\circ}\)
  4. \(60^{\circ}\)

(4) \(\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}}\)=

  1. \(\cos 60^{\circ}\)
  2. \(\sin 60^{\circ}\)
  3. \(\tan 60^{\circ}\)
  4. \(\sin 30^{\circ}\)

Solution:

(1) 1

⇒ \(\frac{2 \tan 30^{\circ}}{1+\tan ^2 30^{\circ}}=\frac{2 \times \frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right)^2}\)

= \(\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}=\frac{2}{\sqrt{3}} \times \frac{3}{4}=\frac{\sqrt{3}}{2}=\sin 60^{\circ}\)

(2) 4

⇒ \(\frac{1-\tan ^2 45^{\circ}}{1+\tan ^2 45^{\circ}}=\frac{1-(1)^2}{1+(1)^2}=\frac{1-1}{1+1}=\frac{0}{2}=0\)

(3) 1

If A =\(0^{\circ}\)then \(2 A=0^{\circ}\)

⇒ \(\sin 2 A =\sin 0^{\circ}=0\)

and \(2 \sin A =2 \sin 0^{\circ}\)

=2 \(\times 0=0\)

So, for \(A=0^{\circ}, \sin 2 A=2 \sin A\)

(4) 3

⇒ \(\frac{2 \tan 30^{\circ}}{1-\tan ^2 30^{\circ}} =\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^2}=\frac{2 / \sqrt{3}}{1-\frac{1}{3}}=\frac{2 / \sqrt{3}}{2 / 3}\)

= \(\frac{2}{\sqrt{3}} \times \frac{3}{2}=\sqrt{3}=\tan 60^{\circ}\)

Question 3. If \(\tan (A+B)=\sqrt{3}\) and \(\tan (A-B)=\frac{1}{\sqrt{3}}\) ; \(0^{\circ}<A+B \leq 90^{\circ}\) ; A>B, find A and B.

Solution :

⇒ \(\tan (A+B)=\sqrt{3}\)

⇒ \(\tan (A+B)=\tan 60^{\circ}\)

⇒ \(A+B=60^{\circ}\)

and \(tan (A-B)=\frac{1}{\sqrt{3}}\)

⇒ \(\tan (A-B)=\tan 30^{\circ} \Rightarrow A-B=30^{\circ}\)

Adding equations (1) and (2)

⇒ \(A+B=60^{\circ}\)

⇒ \(A-B=30^{\circ}\)

⇒ \( 2 A=90^{\circ}\)

⇒ \(A \quad A=45^{\circ}\)

Put the value of A in equation (1),

⇒ \(45^{\circ}+B=60^{\circ} \Rightarrow \quad B\)

A=\(45^{\circ}\) and B=\(15^{\circ} \quad 45^{\circ}=15^{\circ}\)

Class 10 Maths NCERT Exemplar Trigonometric Identities Solved

Question 4. State whether the following are true or false. Justify your answer.

  1. \(\sin (A+B)=\sin A+\sin B\)
  2. The value of \(\sin \theta\) increases as \(\theta\) increases.
  3.  The value of \(\cos \theta\) increases as \(\theta\) increases.
  4. \(\sin \theta=\cos \theta\) for all values of θ.
  5.  cot A is not defined for A=\(0^{\circ}\)

Solution :

(1) False,

Let A=\(30^{\circ}\) and B=\(60^{\circ}\)

⇒ \(\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)=\sin 90^{\circ}=1\)

and \(\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}\)

= \(\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{\sqrt{3}+1}{2} \neq 1 \)

⇒ \(\sin (A+B) \neq \sin A+\sin B\)

(2) True, as the value of \(\theta\) varies from \(\theta^{\circ}\) to \(90^{\circ}\) then the value of \(\sin \theta\) varies from 0 to 1 .

(3) False, as the value of \(\theta\) varies front 0° to 90° then the value of cos \(\theta\) varies from 1 to 0,

i.e, the value of cos \(\theta\) decreases.

(4) False,

⇒ \(\theta\) = 0° then sin \(\theta\) = sin 0° = 0

and \(\cos 0=\cos \theta^{\circ}=1\)

⇒ \(\sin 0 \times \cos 0\), if \(\theta=0^{\circ}\)

(5) True,

⇒ \(A=0^{\circ}\) than \(\cot A=\cot 0^{\circ}\) which is not defined.

NCERT Exemplar Solutions for Introduction to Trigonometry Class 10

NCERT Exemplar For Class 10 Maths Chapter 8  Exercise 8.3

Question 1. Evaluate :

  1. \(\frac{\sin 18^{\circ}}{\cos 72^{\circ}}\)
  2. \(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\)
  3. \(\cos 48^{\circ}-\sin 42^{\circ}\)
  4. \(cosec 31^{\circ}-\sec 59^{\circ}\)

Solution :

(1) \(\frac{\sin 18^{\circ}}{\cos 72^{\circ}} =\frac{\sin \left(90^{\circ}-72^{\circ}\right)}{\cos 72^{\circ}}\)

=\(\frac{\cos 72^{\circ}}{\cos 72^{\circ}}=1\)

\(\frac{\sin 18^{\circ}}{\cos 72^{\circ}}\) = 1

(2)\(\frac{\tan 26^{\circ}}{\cot 64^{\circ}} =\frac{\tan \left(90^{\circ}-64^{\circ}\right)}{\cot 64^{\circ}}\)

=\(\frac{\cot 64^{\circ}}{\cot 64^{\circ}}=1\)

\(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\) =1

(3)\(\cos 48^{\circ}-\sin 42^{\circ} =\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ}\)

=\(\sin 42^{\circ}-\sin 42^{\circ}=0\)

\(\cos 48^{\circ}-\sin 42^{\circ}\) =0

(4) \({cosec} 31^{\circ}-\sec 59^{\circ}\)

= \({cosec}\left(90^{\circ}-59^{\circ}\right)-\sec 59^{\circ}\)

=\(\sec 59^{\circ}-\sec 59^{\circ}=0\)

\(cosec 31^{\circ}-\sec 59^{\circ}\)= 0

Question 2. Show that:

  1. \(\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1\)
  2. \(\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0\)

Solution :

(1) L.H.S. =\(\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}\)

=\(\tan 48^{\circ} \cdot \tan 23^{\circ} \cdot \tan \left(90^{\circ}-48^{\circ}\right)\)

⇒ \(\cdot \tan \left(90^{\circ}-23^{\circ}\right)\)

= \(\tan 48^{\circ} \cdot \tan 23^{\circ} \cdot \cot 48^{\circ} \cdot \cot 23^{\circ}\)

= \(\tan 48^{\circ} \cdot \tan 23^{\circ} \cdot \frac{1}{\tan 48^{\circ}} \cdot \frac{1}{\tan 23^{\circ}}\)

= 1 = R.H.S.

Hence Proved.

(2) L.H.S.=\(\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ}+\sin 52^{\circ}\)

=\(\cos \left(90^{\circ}-52^{\circ}\right) \cdot \cos \left(90^{\circ}-38^{\circ}\right)\)

⇒ \(-\sin 38^{\circ} \cdot \sin 52^{\circ}\)

=\(\sin 52^{\circ} \cdot \sin 38^{\circ}-\sin 38^{\circ} \cdot \sin 52^{\circ}\)

= 0 = R.H.S

Hence Proved.

Question 3. If \(\tan 2 A=\cot \left(A-18^{\circ}\right)\), where 2 A is an acute angle, find the value of A.

Solution:

⇒ \(\tan 2 A =\cot \left(A-18^{\circ}\right)\)

⇒ \(\cot \left(90^{\circ}-2 A\right) =\cot \left(A-18^{\circ}\right)\)

⇒ \(90^{\circ}-2 A =A-18^{\circ}\)

⇒ \(90^{\circ}+18^{\circ} =A+2 A\)

⇒ \(3 A =108^{\circ}\)

A =\(36^{\circ}\)

The value of A =\(36^{\circ}\)

Question 4. If \(\tan A=\cot B\), prove that

A+B=\(90^{\circ}\).

Solution :

⇒ \(\tan A=\cot B\)

⇒ \(\tan A=\tan \left(90^{\circ}-B\right)\)

⇒ \(A=90^{\circ}-B\)

⇒ \(A+B=90^{\circ}\)

Hence Proved.

Question 5. If \(\sec 4 A={cosec}\left(A-20^{\circ}\right)\), where 4 A is an acute angle, find the value of A.

Solution :

⇒ \(\sec 4 A = cosec \left(A-20^{\circ}\right)\)

cosec\(\left(90^{\circ}-4 A\right) = cosec\left(A-20^{\circ}\right)\)

⇒ \(90^{\circ}-4 A =A-20^{\circ}\)

⇒ \(90^{\circ}+20^{\circ} =A+4 A\)

⇒ \(5 A =110^{\circ}\)

A =\(22^{\circ}\)

The value of A =\(22^{\circ}\)

Question 6. If A, B and C are interior angles of a triangle A B C, then show that \(\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}\)

Solution :

In \(\triangle A B C\)

⇒ \(A+B+C=180^{\circ}\)

⇒ \(B+C=180^{\circ}-A\)

⇒ \(\frac{B+C}{2}=\frac{180^{\circ}-A}{2}\)

= \(\frac{180^{\circ}}{2}-\frac{A}{2}=90^{\circ}-\frac{A}{2}\)

⇒ \(\sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)\)

⇒ \(\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}\)

Hence Proved.

NCERT Exemplar For Class 10 Maths Chapter 8  Exercise 8.4

Question 1. Express the trigonometric ratios \(\sin A, \sec A\) and \(\tan A\) in terms of \(\cot A\).

Solution :

⇒ \(\sin A=\frac{1}{cosec^2 A}\)

⇒ \(\sin A=\frac{1}{\sqrt{{cosec}^2 A}}\)

⇒ \(\sin A=\frac{1}{\sqrt{1+\cot ^2 A}}\)

⇒ \(\sec A=\sqrt{\sec ^2 A}\)

⇒ \(\sec A=\sqrt{1+\tan ^2 A}\)

⇒ \(\sec A=\sqrt{1+\left(\frac{1}{\cot A}\right)^2}\)

⇒ \(\sec A=\sqrt{1+\frac{1}{\cot ^2 A}}=\sqrt{\frac{\cot ^2 A+1}{\cot ^2 A}}\)

and \(\tan A=\frac{1}{\cot A}\)

Question 2. Write all the other trigonometric ratios of \(\angle A\) in terms of \sec A.

Solution :

⇒ \(\sin A=\sqrt{\sin ^2 A} =\sqrt{1-\cos ^2 A}\)

= \(\sqrt{1-\frac{1}{\sec ^2 A}}=\sqrt{\frac{\sec ^2 A-1}{\sec ^2 A}}\)

⇒ \(\sin A =\frac{\sqrt{\sec ^2 A-1}}{\sec A}\)

cos A =\(\frac{1}{\sec A}\)

tan A =\(\sqrt{\tan ^2 A}\)

⇒ \(\tan A =\sqrt{\sec ^2 A-1}\)

⇒ \(\cot A =\frac{1}{\tan A}=\frac{1}{\sqrt{\tan ^2 A}}\)

⇒ \(\cot A=\frac{1}{\sqrt{\sec ^2 A-1}}\)

⇒ \(cosec A=\sqrt{{cosec}^2 A}=\sqrt{1+\cot ^2 A}\)

= \(\sqrt{1+\frac{1}{\tan ^2 A}}\)

= \(\sqrt{\frac{1+\tan ^2 A}{\tan ^2 A}}=\sqrt{\frac{\sec ^2 A}{\sec ^2 A-1}}\)

cosec A=\(\frac{\sec A}{\sqrt{\sec ^2 A-1}}\)

Class 10 Chapter 8 Trigonometric Identities Solved Questions

Question 3. Evaluate:

  1. \(\frac{\sin ^2 63^{\circ}+\sin ^2 27^{\circ}}{\cos ^2 17^{\circ}+\cos ^2 73^{\circ}}\)
  2. \(\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\)

Solution:

(1) \(\frac{\sin ^2 63^{\circ}+\sin ^2 27^{\circ}}{\cos ^2 17^{\circ}+\cos ^2 73^{\circ}}\)

=\(\frac{\sin ^2\left(90^{\circ}-27^{\circ}\right)+\sin ^2 27^{\circ}}{\cos ^2\left(90^{\circ}-73^{\circ}\right)+\cos ^2 73^{\circ}}\)

=\(\frac{\cos ^2 27^{\circ}+\sin ^2 27^{\circ}}{\sin ^2 73^{\circ}+\cos ^2 73^{\circ}}=\frac{1}{1}=1\)

  1. \(\frac{\sin ^2 63^{\circ}+\sin ^2 27^{\circ}}{\cos ^2 17^{\circ}+\cos ^2 73^{\circ}}\)=1

(2) \(\sin 25^{\circ} \cdot \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\)

= \(\sin 25^{\circ} \cdot \cos \left(90^{\circ}-25^{\circ}\right)\)

⇒ \(+\cos 25 \sin \left(90^{\circ}-25^{\circ}\right)\)

= \(\sin 25^{\circ} \cdot \sin 25^{\circ}+\cos 25^{\circ} \cdot \cos 25^{\circ}\)

= \(\sin ^2 25^{\circ}+\cos ^2 25^{\circ}=1\)

\(\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\) = 1

Question 4. Choose the correct option. Justify your choice.

(1) 9 \(\sec ^2 A-9 \tan ^2 A\)=

  1. 1
  2. 9
  3. 8
  4. 0

(2) \((1+\tan \theta+\sec \theta)\)

  1. \((1+\cot \theta- cosec \theta)\)=
  2. 0
  3. 1
  4. 2

(3) \((\sec A+\tan A)(1-\sin A)=\)

  1. sec A
  2. sin A
  3. cosec A
  4. cos A

(4) \(\frac{1+\tan ^2 A}{1+\cot ^2 A}\)=

  1. \(\sec ^2 A\)
  2. -1
  3. \(\cot ^2 A\)
  4. \(\tan ^2 A\)

Solution :

(1) Answer. (2)

⇒ \(9 \sec ^2 A-9 \tan ^2 A=9\left(\sec ^2 A-\tan ^2 A\right)\)

=9 \(\times \)1=9

9 \(\sec ^2 A-9 \tan ^2 A\)= 9

(2) Answer. (3)

⇒ \((1+\tan \theta+\sec \theta)(1+\cot \theta-{cosec} \theta)\)

=\(1+\cot \theta-{cosec} \theta+\tan \theta+\tan \theta \cdot \cot \theta\)

⇒ –\(\tan \theta \cdot {cosec} \theta+\sec \theta+\sec \theta \cdot \cot \theta-\sec \theta \cdot{cosec} \theta\)

= \(1+\cot \theta-{cosec} \theta+\tan \theta +\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta}+\sec \theta\)

⇒ \(+\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}-\sec \theta {cosec} \theta\)

=\(1+(\cot \theta+\tan \theta)-{cosec} \theta\)

⇒ \(+1-\sec \theta+\sec \theta+ cosec \theta\)

⇒ \(-\sec \theta cose \theta\)

= \(2+\left(\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}\right)-\sec \theta {cosec} \theta\)

= \(2+\frac{\cos { }^2 \theta+\sin ^2 \theta}{\sin \theta \cdot \cos \theta}-\sec \theta{cosec} \theta\)

= \(2+\frac{1}{\sin \theta \cos \theta}-\frac{1}{\cos \theta \sin \theta}=2\) .

\((1+\tan \theta+\sec \theta)\) =1

(3) Answer. (4)

⇒ \((\sec A+\tan A)(1-\sin A)\)

= \(\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)\)

= \(\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)\)

= \(\frac{1-\sin ^2 A}{\cos A}=\frac{\cos ^2 A}{\cos A}=\cos A \)

\((\sec A+\tan A)(1-\sin A)=\) =cos A

(4) Answer. (4)

⇒ \(\frac{1+\tan ^2 A}{1+\cot ^2 A} =\frac{1+\tan ^2 A}{1+\frac{1}{\tan ^2 A}}=\frac{1+\tan ^2 A}{\frac{\tan ^2 A+1}{\tan ^2 A}}\)

=\(\tan ^2 A\)

\(\frac{1+\tan ^2 A}{1+\cot ^2 A}\)= \(\tan ^2 A\)

Class 10 Trigonometry Chapter Questions and Step-by-Step Answers

NCERT Exemplar For Class 10 Maths Chapter 8  Trigonometry Multiple-Choice Questions

Question 1. The value of \(\sin 45^{\circ}+\cos 45^{\circ}\) is :

  1. 2
  2. \(\sqrt{2}\)
  3. \(\frac{\sqrt{3}}{2}\)
  4. 1

Answer: 2. \(\sqrt{2}\)

The value of \(\sin 45^{\circ}+\cos 45^{\circ}\) is \(\sqrt{2}\)

Question 2. If \(\sin A=\frac{3}{2}\) then the value of tan A is:

  1. \(\frac{5}{3}\)
  2. \(\frac{4}{3}\)
  3. \(\frac{3}{4}\)
  4. \(\frac{3}{5}\)

Answer: 3. \(\frac{3}{4}\)

The value of tan A is \(\frac{3}{4}\)

Question 3. If \(\sin A+\sin ^2 A=1\) then the value of \(\left(\cos ^2 A+\cos ^4 A\right)\) is :

  1. 1
  2. \(\frac{1}{2}\)
  3. 2
  4. \(\frac{1}{3}\)

Answer: 1. 1

The value of \(\left(\cos ^2 A+\cos ^4 A\right)\) is 1.

Question 4. If \(\cos 8 \alpha=\sin \alpha\) and \(8 \alpha<90^{\circ}\) then the value of \(\tan 3 \alpha\) is :

  1. 0
  2. 1
  3. \(\sqrt{3}\)
  4. \(\frac{1}{\sqrt{3}}\)

Answer: 4. \(\frac{1}{\sqrt{3}}\)

The value of \(\tan 3 \alpha\) is  \(\frac{1}{\sqrt{3}}\)

Question 5. In \(\triangle A B C\), \(\angle C=90^{\circ}\). The value of \(\cos (A+B)\) is :

  1. 1
  2. 0
  3. -1
  4. \(\frac{1}{2}\)

Answer: 2.  0

The value of \(\cos (A+B)\) is 0

Question 6. If \(4 \tan \theta=3\) then the value of \(\frac{4 \sin \theta-3 \cos \theta}{\sin \theta+\cos \theta}\) is :

  1. \(-\frac{16}{25}\)
  2. \(\frac{16}{25}\)
  3. 0
  4. 4

Answer: 3.  0

Question 7. The value of \(\sin \left(60^{\circ}+\theta\right)-\cot \left(30^{\circ}-\theta\right)\) is :

  1. 0
  2. 2 \(\tan \theta\)
  3. \(2 \cot \theta\)
  4. \(2 \sqrt{3}\)

Answer: 1.  0

Question 8. If \(\cos \theta=\sin \theta, 0 \leq \theta<90^{\circ}\), then angle \(\theta\) is equal to :

  1. \(0^{\circ}\)
  2. \(30^{\circ}\)
  3. \(45^{\circ}\)
  4. \(60^{\circ}\)

Answer: 3. \(45^{\circ}\)

\(\theta\) is equal to \(45^{\circ}\)

NCERT Exemplar Solutions for Introduction to Trigonometry Chapter

Question 9. If \(\sin A=\frac{3}{5}\) then the value of \(\cos A\) is:

  1. \(\frac{5}{4}\)
  2. \(\frac{4}{5}\)
  3. \(\frac{5}{3}\)
  4. \(\frac{4}{3}\)

Answer: 2. \(\frac{4}{5}\)

The value of \(\cos A\) is \(\frac{4}{5}\)

Question 10. If \(\sec \theta=2\) then the value of \(\theta\) is:

  1. \(30^{\circ}\)
  2. \(45^{\circ}\)
  3. \(60^{\circ}\)
  4. \(90^{\circ}\)

Answer: 3. \(60^{\circ}\)

The value of \(\theta\) is \(60^{\circ}\)

Class 10 Maths Trigonometry Questions with Answers

Question 11. If \(\cos ^2 \theta=\frac{1}{2}\) then the value of \(\sin ^2 \theta\) is:

  1. \(\frac{1}{4}\)
  2. \(\frac{\sqrt{3}}{2}\)
  3. \(\frac{1}{\sqrt{2}}\)
  4. \(\frac{1}{2}\)

Answer: 4. \(\frac{1}{2}\)

The value of \(\sin ^2 \theta\) is \(\frac{1}{2}\)

Question 12. If \(\tan \theta=\frac{2 a b}{a^2-b^2}\) then the value of \(\cos \theta\) is:

  1. 1
  2. \(\frac{a^2-b^2}{a^2+b^2}\)
  3. \(\frac{a^2+b^2}{a^2-b^2}\)
  4. \(\frac{2 a b}{a^2+b^2}\)

Answer: 2.  \(\frac{a^2-b^2}{a^2+b^2}\)

The value of \(\cos \theta\) is \(\frac{a^2-b^2}{a^2+b^2}\)

Question 13. If cosec A= A, \(0^{\circ} \leq A \leq 90^{\circ}\) then \(\angle A\) is equal to :

  1. \(120^{\circ}\)
  2. \(60^{\circ}\)
  3. \(45^{\circ}\)
  4. \(30^{\circ}\)

Answer: 3. \(45^{\circ}\)

Question 14. If \(3 \cot A=4\) then the value of \(\sec A\) is :

  1. \(\frac{3}{4}\)
  2. \(\frac{5}{4}\)
  3. \(\frac{2}{3}\)
  4. \(\frac{3}{2}\)

Answer: 2. \(\frac{5}{4}\)

The value of \(\sec A\) is \(\frac{5}{4}\)

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Introduction

We have studied real numbers. Now we will discuss two important results, namely

  1. Euclid’s division lemma
  2. Fundamental theorem of arithmetic

NCERT Exemplar Solutions For Class 10 Maths Chapter 1 Real Numbers

NCERT Exemplar Class 10 Maths Chapter 1 with answers

Difference Between Algorithm And Lemma

Algorithm: An algorithm is a series of well-defined steps, that gives a procedure for solving a problem.

Lemma: It is a proven statement used to prove another statement.

Read and Learn More Class 10 Maths Solutions Exemplar

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Euclid’s Division Lemma

Real Numbers Euclids Division Lemma

Note: Remainder is always less Dividend than the divisor. It is greater = Divisor x Quotient+ Remainder than or equal to zero.

i.e., \(0 \leq r<\text { divisor }\)

We think that all of you are familiar with this well-known procedure. Now, we will generalize this division method known as Euclid’s Divison Lemma.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Euclid’s Division Lemma Statement

For any two given positive integers a and b, there exists unique whole numbers q and r such that

a = bq +r

Real Numbers Positive Integers A and B There Exists Unique Whole Numbers Q and R

Where 0 ≤ r< b

Here, a = dividend, b = divisor, q = quotient, r= remainder

Euclid’s Division Algorithm (To Find The HCF Of Two Positive Integers)

It is very useful to obtain the H.C.F. of two positive integers. Let c and d be two positive integers with c > d.

Now, to find the H.C.F. of c and d, follow the following steps:

Step 1: Apply Euclid’s division lemma to c and d.

We find whole numbers q and r such that

c = dq + r

where, 0 ≤ r < d,

Step 2: If r = 0 then d (recent divisor) is the H.C.F. of c and d,  and if r ≠ 0 then, apply the division lemma to d and r.

Step 3: Continue the process till the remainder is zero. The divisor at this stage will be the required H.C.F.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Euclid’s Division Algorithm Solved Examples

Question 1. Use Euclid’s algorithm to find the H.C.F. of 4052 and 12570.
Solution:

Here, 12576 >4052

Real Numbers Euclids Division Algorithm

∴ 12576 = 4052 × 3 + 420

4052 = 420 × 9 + 272

420 =272 × 1 + 148

272 = 148 × 1 + 124

148 = 124 × 1 + 24

124 =24 × 5 + 4

24 = 4 × 6 + 0

Since remainder = 0, ⇒ recent divisor is the H.C.F.

∴ H.C.F. (12576, 4052)= 4

The H.C.F. of 4052 and 12570 = 4

Question 2. If the H.C.F. of 210 and 55 is expressible in the form 210×5 + 55x, then find the value of x.
Solution:

First, we will find the H.C.F. of 210 and 55.

Here, 210 >55

Real Numbers The HCF Of 210 And 55

210 = 55 × 3 + 45

55 =45 × 1 + 10

45 = 10 × 4 + 5

10 =5 × 2 + 0

Since remainder = 0

⇒ The recent divisor is the H.C.F.

∴ H.C.F. of (210. 55) = 5

Now, 210 × 5 + 55x = 5

55x = 5 – 210 x 5

= 5- 1050

=-1045

⇒ \(x=-\frac{1045}{55}\)

=-19

The value of x =-19

Question 3. Find die H.C.F. of 65 and 117 and express it in the form of 65x + 117y.
Solution:

Here, 117 > 65

Real Numbers The HCF Of 65 And 117

∴ 117 =65 × 1 + 52

65 = 52 × 1 + 13

52 = 13 × 4 + 0

Since remainder = 0

⇒ recent divisor is die H.C.F.

∴ H.C.F. (117, 65) = 13

Now, 13 = 65 -52 × 1

13 =65 – (117- 65 × 1)

= 65 – 117 + 65 × 1

= 65 × 2-117

= 65x + 117y

where, x = 2 and y = -1

Remark:

It follows from the above example that the H.C.F. (say h) of two positive integers o and b can be expressed as a linear combination of o and b i.e., h = xa + yb for some integers x and y. This representation is not unique. Because, h = xa + yb

⇒ \(h=x a+\underbrace{a b-a b}_{\begin{array}{c} \text { Add and } \\ \text { subtract } \end{array}}+y b=a(x+b)+b(y-a)\)

⇒ \(h=x a-\underbrace{a b+a b}_{\begin{array}{c} \text { Subtract } \\ \text { and add } \end{array}}+y b=a(x-b)+b(y+a)\)

So, the coefficients of a and b may be

  1. x and y
  2. x + band y-a
  3. x-b and y+ a

Hence, the linear combination of a and b is not unique.

Factor

It divides the number whose factor is this.

For example: 1,2,3 and 6 are the factors of 6. So, each factor divides 6 completely.

Multiple

It is divided by the number whose multiple is this.

For example : 3, 6, 9 12, 15 and 18 are the multiples of number 3. So, each multiple can be divided by the number 3.

Remember:

  1. A smaller number divides the larger while larger number is divided by smaller.
  2. Factors are smaller while multiples are larger.

H.C.F. (Highest Common Factor)

H.C.F. is the highest common factor of two or more numbers which divides each of the numbers.

For example: Two numbers are 24 and 36.

Real Numbers Highest Common Factor

Highest (maximum) common factor = 12

∴ H.C.F. = 12

So, 12 is the highest number which divides 24 and 36 completely.

L.C.M. (Least Common Multiple)

L.C.M. of two or more numbers is the least common multiple that is divided by all the numbers.

For example: Two numbers are 24 and 36.

Real Numbers Least Common Multiple

∴ The least (minimum) common multiple is 72.

So, 72 is the least number which is divided by 24 and 36 both.

Real Numbers Class 10 Exemplar problems and solutions

Question 4. Find the largest number, which divides 246 and 1030 leaving the remainder 6 in each case.

Solution:

We have to find a number, which divides the other numbers means → H.C.F.

It is given that the required number, when divided between 246 and 1030 leaves the remainder 6 i.e.; 6 is extra in each number. It means that if these numbers are 6 less, then there is no remainder in each case.

∴ 246- 6 = 240 and 1030- 6 = 1024 are completely divisible by the required number.

Now, 1024 > 240

Real Numbers The Largest Number Divides 246 And 1030

∴ H.C.F. (1024,240)= 16

Hence, required no. = 16

Question 5. Find the largest number that will divide 400, 437, and 542 leaving the remainder 9, 12,15 respectively.

Solution:

We have to find a number, which divides the other numbers means → H.C.F.

It is given that the required number, when divided into 400, 437, and 542, leaves the remaining 9, 12, and 15 respectively. It means that if 400 is 9 less, 437 is 12 less, and 542 is 15 less, then on division, gives no remainder (extra).

∴ 400 – 9 = 391,437-12 = 425 and 542 – 15 = 527 are completely divisible by the required number.

First, we will find the H.C.F. of 391 and 425.

Real Numbers We Will Find The HCF Of 391 And 425

∴ 425 =391 × 1 +34

391 = 34 × 11 + 17

34 =17 × 2 + 0

∴ H.C.F. (391,425) = 17

Now, we will find the H.C.F. of 17 and 527.

Real Numbers We Will Find The HCF Of 17 And 527

527 = 17 × 31 +0

⇒ H.C.F. (17,527) = 17

∴ Required number = 17

Question 6. Show that one and only one out of n, (n+ 1) and (n + 2) is divisible by 3, where n is any positive integer.

Solution:

When n is divided by 3, let q and r be the quotient and remainder respectively.

∴ n = 3q + r

where, 0 ≤ r < 3 i.e.,

r = 0 or r = 1 or r = 2

1. When, r = 0, then

n = 3q,

which is divisible by 3.

n + 1 = 3q + 1

which leaves a remainder of 1 when divided by 3.

i. e., (n + 1) is not divisible by 3.

n + 2 =3q + 2

which leaves a remainder of 2 when divided by 3.

i.e., (n + 2) is not divisible by 3.

So, only n = 3q is divisible by 3 when r = 0.  …….(1)

2. When, r = 1, then

n= 3q + 1

which is not divisible by 3. (∵ it leaves a remainder 1)

n + 1 = 3q + 2

which is not divisible by 3. (∵ remainder = 2)

n + 2 = 3q + 3 = 3 (q + 1)

which is divisible by 3.

So, only n + 2 is divisible by 3 when r= 1.  ……….(2)

3. When, r = 2, then

n = 3q + 2

which is not divisible by 3. (∵ remainder = 2)

⇒ n + 1 = 3q + 3 = 3 (q + 1)

which is divisible by 3.

n + 2 =3q + 4 = 3q + 3 + 1= 3 (q + I) + 1

which is not divisible by 3 (∵ remainder = 1)

So, only n + 1 is divisible by 3 when r = 2.  ………(3)

Hence, from equations (1), (2) and (3), we can say that one and only one out of n, (n + 1) and (n + 2) is divisible by 3.

Hence Proved.

Question 7. There are 156, 208, and 260 students in groups A, B, and C respectively. Buses are to be hired to take them for a field trip. Find the minimum number of buses to be hired, if the same number of students should be accommodated in each bus, and if a separate bus for separate groups is needed.

Solution:

Given:

There are 156, 208, and 260 students in groups A, B, and C respectively. Buses are to be hired to take them for a field trip.

First of all we shall find the H.C.F. of number of students in each group. This will give tls the maximum number of students of the same group in each bus.

Given numbers are 156, 208 and 260. ,

Here, 260 > 208 > 156

Let us first find the H.C.F. of 156 and 208

By using Euclid’s division lemma for 156 and 208,

we get 208 = 156 × 1 + 52. Here remainder ≠ 0

156 = 52 × 3 + 0.

Here, remainder = 0

⇒ The recent divisor is the H.C.F.

∴ H.C.F. of 156 and 208 is 52.

Now, 260 > 52

So, we shall find the H.C.F. of 260 and 52 by Euclid’s division lemma.

∴ 260 =52 × 5 + 0.

Here, remainder = 0

⇒ The recent divisor is the H.C.F.

∴ H.C.F. of 260 and 52 is 52.

Thus, H.C.F. of 156, 208 and 260 is 52.

Hence, the minimum number ot buses = \(\frac{156}{52}+\frac{208}{52}+\frac{260}{52}\)

= 3 + 4 + 5

= 12

The minimum number ot buses = 12

Question 8. A sweetseller has 420 kaju burfis and 150 badam burfis. Mo wants to stack them in such a way that each stack has the same number, and they take up the least area of the tray. How many of these can be placed in each stack? How many stacks are formed?

Solution:

Given:

A sweetseller has 420 kaju burfis and 150 badam burfis. Mo wants to stack them in such a way that each stack has the same number, and they take up the least area of the tray.

Maximum number of burfis in each stack = H.C.F. of 420 and 150

420 =2 × 2 × 3 × 5 × 7,

150 = 2 × 3 × 5 × 5

∴ H.C.F. =2 × 3 × 5

= 30

∴ Maximum number of burfis in each stack= 30

Also, number of stacks = \(\frac{420}{30}+\frac{150}{30}\)

= 14 = 5

= 19

Maximum number of burfis in each stack = 19

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Fundamental Theorem Of Arithmetic

Every composite number can be uniquely expressed as a product of primes, except for the order in which these prime factors occurs.

For example., 143 =11 × 13

24 = 2 × 2 × 2 × 3

= 23 × 3

416 = 2 × 2 × 2 × 2 × 2 × 13

= 25 × 13

Real Numbers Difference Between Composite Number And Primary Number

Remember:

  1. 1 is not a prime number as it has no two different factors.
  2. 1 is not a composite number also because at least one factor other than 1 and the number must be there.
  3. 2 is the smallest prime number and it is the only even prime number also.
  4. The smallest even composite number is 4 while the smallest odd composite number is 9.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Fundamental Theorem Of Arithmetic Solved Examples

Question 1. Express each of the following as a product of prime factors:

  1. 1400
  2. 7650

Solution:

1. 1400

Real Numbers A Product Of Primary Factor 1

∴ 1400 = 2 × 2 × 2 × 5 × 5 × 7

Product of prime factors of 1400 = 2 × 2 × 2 × 5 × 5 × 7

2. 7650

Real Numbers A Product Of Primary Factor 2

∴ 7650 = 2 × 5 × 5 × 3 × 3 × 17

= 2 × 3 × 3 × 5 × 5 × 17

Product of prime factors of 7650 = 2 × 3 × 3 × 5 × 5 × 17

Question 2. Find the missing numbers in the following prime factorization.

Real Numbers The Missing Numbers In The Following Prime Factorisation

Solution:

The product of primes starts at the bottom of the factor tree and this product goes up to the top. The upper box, on 3 and 13 is filled by the product of 3 and 13, i.e., 39.

The upper next box on 2 and 39 will be filled by the product of 2 and 39, i.e., 78.

The topmost box on 2 and 78 will be filled by the product of 2 and 78, i.e., 156.

Real Numbers The Product Of Primes Factorisation

Question 3. Show that 5×11×17+17 is a composite number.

Solution:

5 × 11 × 17+ 17 = 17 × (5 × 11 + 1)

= 17 × (55 + 1)

= 17 × 56

∴ It has more than two factors including 1 and number itself.

Hence, it is a composite number.

Question 4. Find the H.C.F. and L.C.M. of 140 and 154 using the prime factorization method.

Solution:

Real Numbers HCF And LCM Of 140

Real Numbers HCF And LCM Of 154

Now,

Real Numbers A Product Of Prime Factorisation Method

∴ H.C.F = 2

L.C.M. = 2 x 2 x 5 x 7 x 11

= 1540

The H.C.F. and L.C.M. of 140 and 154 are 2 and 1540.

Question 5. Find the H.C.F. and L.C.M. of 12, 18, 24 by prime factorisation method.

Solution:

Real Numbers HCF And LCM Of 12

Real Numbers HCF And LCM Of 18

Real Numbers HCF And LCM Of 24

∴ 12 = 2 × 2 × 3

18 = 2 × 3 × 3

24 = 2 × 2 × 3 × 2

Now, H.C.F. = 2 × 3 = 6

and L.C.M. = 2 × 2 × 3 × 3 × 2

= 72

Question 6. Find the L.C.M. and H.C.F. of 36 and 48 and verify that H.C.F. x L.C.M. = product of the given two numbers.

Solution:

Real Numbers The LCM And HCF Of 36

Real Numbers The LCM And HCF Of 48

36 =2×2×3×3

48 =2×2×3×2×2

H.C.F. = 2×2×3=12

L.C.M. =2×2×3×3×2×2 = 144

Now H.C.F. x L.C.M. = 12 × 144

= 1728

and product of two numbers = 36 × 48

= 1 728

Hence, H.C.F. × L.C.M. = product of two numbers

An Important Result

Product of two given numbers = Product of their H.C.F. and L.C.M.

This result is true only for two numbers.

Real Numbers Class 10 Exemplar problems and solutions

Question 7. The H.C.F of two numbers is 23 and their L.C.M. is 1449. If one number is 207, find the other number.

Solution:

Here, H.C.F = 23

L.C.M. = 1449

Now first no. x second no. = H.C.F. × L.C.M

⇒ Second no. = \(\frac{\text { H.C.F. } \times \text { L.C.M. }}{\text { first no. }}\)

⇒ \(\frac{23 \times 1449}{207}\)

= 161

The other number is 161

Question 8. Show that 12n cannot end with the digit 0 or 5 for any natural number n.

Solution:

Real Numbers Natural Number n

∴ 12 = 2×2×3 = 22×3

⇒ 12n = (22 x 3)n = 22n × 3n

∵ it has no term containing 5.

∴ no value of n eN for which 12″ ends with digit 0 or 5.

Hence Proved.

Question 9. On a morning walk, three persons step off together and their steps measure 40 cm, 42 cm, and 45cm respectively. What is the minimum distance each should walk, so that each can cover the same distance in complete steps?

Solution:

Given:

On a morning walk, three persons step off together and their steps measure 40 cm, 42 cm, and 45cm respectively.

We have to find a number (distance) which is divided by each number completely, which means → L.C.M.

We have to find the L.C.M. of 40 cm, 42 cm, and 45 cm to get the required distance.

Real Numbers The LCM Of 40 Cm

Real Numbers The LCM Of 42 Cm

Real Numbers The LCM Of 45

∴ 40 =2×2×2×5

42 =2 × 3 × 7

45 = 5 × 3 ×x 3

Now, L.C.M. = 2×2×2×5×3×7×3

= 2520

∴ The minimum distance each should walk = 2520 cm

Question 10. What is the smallest number which, when divided by 35, 56, and 91 leaves a remainder of 7 in each case?

Solution:

A number is divided by 3 numbers, which means → L.C.M. of 3 numbers

35 = 5 × 7

56=2×2×2×7

91 = 13 × 7

∴ L.C.M. = 5×7×2×2×2×13

= 3640

∴ The smallest number completely divisible by 35, 36, and 91 is 3640.

Hence, the smallest numbers which when divided by 35, 56, and 91 leave a remainder of 7 in each case will be 3640 + 7 = 3647

Question 11. Find the greatest number of 5 digits exactly divisible by 35, 56, and 91.

Solution:

A number is divided by 3 numbers.

It means → L.C.M. of 3 numbers.

35 = 5×7,56 = 2×2×2×7,

91 = 13 × 7

∴ L.C.M = \(\underbrace{5 \times 7}_{\text {1 as it is }} \times \underbrace{2 \times 2 \times 2}_{\begin{array}{c}
\text { from 2 } \\
\text { not taken yet }
\end{array}} \times \underbrace{13}_{\begin{array}{c}
\text { from 3 } \\
\text { not taken yet }
\end{array}}\)

= 3640

So, 3640 is the smallest number which is divided by all the 3 numbers 35, 56, and 91 completely. But we have to find the greatest number of 5 digits.

Greatest number of 5 digits = 99999

So, required number = 99999 – remainder when 99 is divided by 3640

= 99999- 1719 = 98280.

Alternatively: You can find the multiples of 3640 (L.C.M. of 35, 56 and 91) as

3640 × 1, 3640 × 2 3640 × 10 = 36400,…

3640 × 20 = 72800, 3640 × 25 = 91000,…

3640 × 27 = 98280 (It may be the largest 5 digit no.)

3640 × 28 = 101920 (No, it is 6 digit no.)

So, 98280 is the required number. But this is the time-talking method. So, avoid it)

Class 10 Chapter 1 Real Numbers Exemplar questions solved

Rational Numbers

The number which are in the form of \(\frac{p}{q}\) where p and q are integers and q ≠ 0 are called rational numbers.

Decimal Representation of a Rational Number

Consider the following examples:

1. \(\frac{1}{4}\)

= 0.25 4

2. \(\frac{2}{3}\)

In the above example 1, the decimal representation of the rational number \(\frac{1}{4}\) is terminating while in example 2, the decimal representation of the rational number \(\frac{2}{3}\) is non-terminating.

∴ Every rational number, when expressed in decimal form is expressible either in terminating or in non-terminating repeating decimal form.

Important Observation:

  1. A rational number \(\frac{p}{q}\) is a terminating decimal only if q can be written in the form of 2m × 5n for some non-negative integers in and n.
  2. A rational number — is a non-terminating repeating decimal if q cannot be written in the form of 2n × 5n.

For example:

  1. \(\frac{1}{14}=\frac{1}{2 \times 7}\) non-terminating after decimal, as denominator consists of 7 which cannot be the part of 2m x 5n.
  2. \(\frac{1}{3600}=\frac{1}{2^4 \times 3^2 \times 5^2}\) is non-terminating after decimal as denominator consists of 3’s which cannot be the part of \(2^m \times 5^n,\)
  3. \(\frac{91}{8750}=\frac{91}{2 \times 5^4 \times 7}\)
    1. Although it seems in first view that denominator is not the form \(2^m \times 5^n,\), after simplifying \(\frac{7 \times 13}{2 \times 5^4 \times 7}=\frac{13}{2 \times 5^4}\) we see that denominator is a part of \(2^m \times 5^n,\). So, \(\frac{91}{8750}\)is a terminating decimal.
    2. So, a rational number must be written in simplest form i.e., no factor other than 1 must be common to both the numerator and the denominator.
  4. \(\frac{3}{625}=\frac{3}{5^4}\)
    1. Although,it seems in the first view that the denominator is not in the form 2m x 5″, butit is our mistake.
    2. Actually, 5 =1×5 =2×5, which is of the form 2 x 5 . So,\(\frac{3}{625}\) is a terminating decimal

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Irrational Numbers

The numbers, which when expressed in the decimal form are expressible as non-terminating and non-repeating decimals, are known as irrational numbers.

For example.,

  1. 2.101001000 is a non-terminating non-repeating decimal, so it is an irrational number.
  2. 1.767767776 is a non-terminating and non-repeating decimal, so it is an irrational number.

If x is a positive integer which is not a perfect square, then \(\sqrt{x}\) is irrational.

For example., \(\sqrt{2}, \sqrt{5}, \sqrt{7}\), etc., are irrational numbers.

Similarly \(\sqrt[3]{7}, \sqrt[4]{10}\), etc., are irrational numbers.

π is irrational and \(\frac{22}{7}\) is rational

Theorem: Let p is a prime number and V be a positive integer. If p divides a2, then show that p divides a.

Proof: We know that every positive integer can be expressed as a product of primes, not necessarily all distinct.

Let a = p1,p2,p3,……..pn

where, p1,p2,p3,……..pn are primes, not necessarily distinct.

∴ a2 = (p1,p2,p3,……..pn) (p1,p2,p3,……..pn)  = p21,p22,p23,……..p2n

Now, p divides a2

⇒ p is a prime factor of a2.

⇒ P is one of P1,p2,P3 …….. P„-

⇒ p divides a.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Irrational Numbers Solved Examples

Question 1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

  1. \(\frac{12}{125}\)
  2. \(\frac{7}{1600}\)

Solution:

1. \(\frac{12}{125}=\frac{12}{5 \times 5 \times 5}=\frac{12}{5^3}=\frac{12}{2^0 \times 5^3}\)

Now, the denominator is in the form of 2m x 5”.

∴ \(\frac{12}{125}\) is a terminating decimal.

2. \(\frac{7}{1600}\)

⇒ \(\frac{7}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5}\)

⇒ \(\frac{7}{2^6 \times 5^2}\)

Now, the denominator is in the form of 2m x 5″.

∴ \(\frac{7}{1600}\) is a terminating decimal.

Question 2. Show that :

  1. \(\frac{3}{250}\)
  2. \(\frac{11}{50}\)

are terminating decimals. Express each of them in decimal form without actual division (long division).

Solution:

1. \(\frac{3}{250}=\frac{3}{2 \times 5 \times 5 \times 5}\)

\(=\frac{3}{2^1 \times 5^3}\)

Now, the denominator is in the form of 2m × 5n

∴ \(\frac{3}{250}\) is a terminating decimal.

Agan, \(\frac{3}{250}\)

⇒ \(\frac{3}{2^1 \times 5^3}\)

⇒ \(\frac{3 \times 2^2}{2^3 \times 5^3}\)

⇒ \(\frac{12}{10^3}]\)

= 0.012

2. \(\frac{11}{50}\)

⇒ \(\frac{11}{2 \times 5 \times 5}\)

⇒ \(\frac{11}{2^1 \times 5^2}\)

Now, the denominator is in the form of 2m × 5n

∴ \(\frac{11}{50}\)

Again, \(\frac{11}{50}\)

\(\frac{11}{2^1 \times 5^2}\) \(\frac{11 \times 2}{2^2 \times 5^2}\) \(\frac{22}{10^2}\)

= 0.22

Question 3.  Show that each of the following are non-terminating repeating decimal:

  1. \(\frac{5}{12}\)
  2. \(\frac{7}{75}\)

Solution:

1. \(\frac{5}{12}\)

⇒ \(\frac{5}{2 \times 2 \times 3}\)

⇒ \(\frac{5}{2^2 \times 3}\)

the denominator 22 x 3 is not in the form of 2m x 5n

∴ it is non-terminating repeating decimal.

2. \(\frac{7}{25}\)

⇒ \(\frac{7}{3 \times 5 \times 5}\)

⇒ \(\frac{7}{3 \times 5^2}\)

the denominator 3 x 52 is not in the form of 2n x 5m

∴ it is non-terminating repeating decimal.

Question 4. The decimal expansion of the rational number \(\frac{43}{2^4 \times 5^3}\) will terminate after how many places of decimals?

Solution:

\(\frac{43}{2^4 \times 5^3}\) \(\frac{43 \times 5}{2^4 \times 5^4}\) \(\frac{215}{10^4}\)

= 0.0215

∴ it will terminate after 4 places of decimals.

CBSE Class 10 Maths Chapter 1 Exemplar book solutions

Question 5. Express each of the following in the simplest form:

  1. \(0. \overline{6}\)
  2. \(3. \overline{3}\)

Solution:

1. Let x = \(0 . \overline{6}\)

⇒ x = 0.666….. (1)

⇒ 10x = 6.666….. (2)

Subtracting equation (1) from (2), we get

9x = 6

⇒ \(x=\frac{6}{9}=\frac{2}{3}\)

⇒ \(0. \overline{6}=\frac{2}{3}\)

2. Let x = \(3 . \overline{3}\)

⇒ x = 3.333…(1)

⇒ 10x = 33.333…(2)

Subtracting equation (1) from (2), we get

9x = 30

⇒ \(x=\frac{30}{9}=\frac{10}{3}\)

⇒ \(3. \overline{3}=\frac{10}{3}\)

Question 6. Express each of the following in the simplest form :

Let x = \(0. \overline{36}\)

⇒ \(1. \overline{046}\)

⇒ \(Let x=0. \overline{36}\)

⇒\(x=0.363636 \ldots . . .\)

⇒ \(100 x=36.363636 \ldots . . \)

Subtracting equation (1) from (2), we get

⇒ \(99 x =36\)

⇒ \(x =\frac{36}{99}=\frac{4}{11}\)

⇒ \( 0 . \overline{36}=\frac{4}{11}\)

2. Let \(x=1. \overline{046}$

⇒ [latex] x  =1.046046046 \ldots\)

⇒ \(1000 x  =1046.046046046 \ldots \)

Subtracting equation (1) from (2), we get

⇒ \(999 x =1045\)

⇒ \(x=\frac{1045}{999}\)

⇒ \(1. \overline{046}\)

⇒ \(\frac{1045}{999}\)

Question 7. A rational number in its recurring decimal expansion is 327.7081. What can you say about the prime factors of q, when this number is expressed in the form \(\frac{p}{q}\)? Give <l reasons.

Solution:

Given:

A rational number in its recurring decimal expansion is 327.7081.

Let x = \(327.7 \overline{081}\)

⇒ x =327.7081081081…..

10x =3277.081081081…..

10000 A- =3277081.081081081…..

On subtraction, 9990x =3273804

∴ x = \(\frac{3273804}{9990}=\frac{60626}{185}\)

which is of the form =\(\frac{p}{q}\)

Now, q= 185 = 5 × 37,

which cannot be written in the form 2m x 5n.

∴ It is a non-terminating and repeating decimal.

Question 8. Prove that \(\sqrt{2}\) is irrational.

Solution:

Let, if possible. \(\sqrt{2}\) be rational and its simplest form be \(\frac{a}{b}\)

Then a and b are integers and have no common factor other than 1 and b ≠ 0

Now, \(\sqrt{2}=\frac{a}{b}\)

⇒ \(2=\frac{a^2}{b^2}\)

⇒ \(a^2=2 b^2\)

As 2b2 is divisible by 2.

∴ a2 is divisible by 2.

⇒ a is divisible by 2.

Let a = 2c, for some integer c.

∴ From equation (1)

(2c)2 = 2b2

⇒ b2 = 2c2

But 2c2 is divisible by 2.

∴ b2 is divisible by 2.

⇒ b is divisible by 2.

Let b = 2d, for some integer d.

Thus, 2 is a common factor of a and b both.

But it contradicts the fact that a and b have no common factor other than 1.

So, our supposition is wrong.

Hence, \(\sqrt{2}\) is irrational.

Hence Proved.

Question 9. If p is a prime number, then prove that \(\sqrt{p}\) is irrational. (Treat this result as a theorem)

Solution:

Let p be a prime number and if possible let \(\sqrt{p}\) be irrational.

Let the simplest form of \(\sqrt{p} \text { be } \frac{a}{b} \text {. }\)

Then a and b are integers and having no common factors other than 1 and b ≠ 0.

Now, \( \sqrt{p}=\frac{u}{b}\)

⇒ \(p=\frac{a^2}{b^2}\)

⇒ \(a^2=p b^2\)

As pb2 is divisible by p.

∴ a2 is divisible by p.

⇒ a is divisible by p.

Let a = pc for some integer c.

From equation (1)

⇒ \((p c)^2=p b^2\)

⇒ \(b^2=p c^2\)

But pc2 is divisible by p.

∴ b2 is divisible by p.

⇒ b is divisible by p.

Let b = pd for some integer d.

Thus, p is a common factor of both a and b.

But it contradicts the fact that a and b have no common factor other than 1.

So, our supposition is wrong.

Hence, \(\sqrt{2}\) is irrational.

Question 10. Show that \((2+\sqrt{3})\) is an irrational number.

Solution:

Let, if possible \((2+\sqrt{3})\) is rational

then, \(2+\sqrt{3}=\frac{a}{b} \text { (say) }\)

where a and b are integers and b ≠ 0

⇒ \(\sqrt{3}=\frac{a}{b}-2\)

⇒ \(\sqrt{3}=\frac{a-2 b}{b}\)

a and b are integers

∴ a – 2b is also an integer.

⇒ \(\frac{a-2 b}{b}\) is rational

Now, L.H.S of equation (1) is the square root of a prime number. So, it is irrational and R.H.S is rational.

Which is a contradiction because a rational number and an irrational number can never be equal.

So, our supposition i.e., \((2+\sqrt{3})\) is rational, is wrong.

Real Numbers Class 10 NCERT Exemplar extra questions

Question 11. Prove that \(5 \sqrt{7}\) is irrational

Solution:

Let if possible \(5 \sqrt{7}\) is rational.

Now, \(5 \sqrt{7}\)is rational and \(\frac{1}{5}\) is rational.

We know that the product of two rational numbers is rational.

∴ \(5 \sqrt{7} \times \frac{1}{5} \text { is rational. }\) is rational.

⇒ \(\sqrt{7}\)is rational.

But square root of a prime number is always an irrational number. This contradicts the fact because an irrational number cannot be equal to a rational number.

So, our supposition is wrong.

Hence, \(5 \sqrt{7}\) is irrational.

Question 12. A rational number in its decimal is 327.7081. What can you say about the prime factor of q. when this number is expressed in the form \(\frac{p}{q}\)? Give reasons.

Solution:

Given:

A rational number in its decimal is 327.7081.

The decimal expansion is 327.7081.

∴ It is a rational number.

Now, 327.7081 = \(\frac{3277081}{10000}\)

⇒ \(\frac{3277081}{2^4 \times 5^4}\)

⇒ \(\frac{p}{q}\)

Here q = \(2^4 \times 5^4\) which is in the form of \(2^m \times 5^n\)

∴ The prime factors of q are 2 and 5

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Exercise 1.1

Question 1. Use Euclid’s division algorithm to find the H.C.F. of :

  1. 135 and 225
  2. 196 and 38220
  3. 867 and 255

Solution:

1. Given numbers 135 and 225

Real Numbers The HCF Of 135 And 225

Here, 225 > 135

∴ 225 = 135 × 1 + 90

Remainder = 90 ≠ 0

135 = 90 × 1 + 45

Remainder = 45 ≠ 0

90 = 45 × 2 + 0

Remainder = 0

∵ The remainder is zero and the divisor is 45

∴ H.C.F. = 45

The H.C.F. of 135 and 225 = 45

2. Given numbers 196 and 38220

Real Numbers The HCF Of 196 And 38220

38220 > 196

∴ 38220 = 196 × 195 + 0

Remainder = 0

∵ The remainder is zero and the divisor is 196.

∴ H.C.F. = 196

The H.C.F. of 196 and 38220 is 196

3. Given numbers 867 and 255

Real Numbers HCF Of 255 And 869

867 > 255

∴ 867 = 255 x 3 + 102

Remainder = 102 ≠ 0

255 = 102 × 2 + 51

Remainder = 51 ≠ 0

102 = 51 × 2 + 0

Remainder = 0

∵ The remainder is zero and the divisor is 51.

∴ H.C.F. =51

The H.C.F. of 867 and 255 is 51

Question 2. Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.

Solution:

Let ‘a’ be an odd positive integer.

From Euclid’s division algorithm,

Let q be the quotient and the remainder when a is divided by 6.

∴ a = 6q +r

where, r = 0,1,2,3,4,5

Now, a = 6q+ 0 or a = 6q + 1 or a = 6q + 2 or a = 6q + 3 or a = 6q + 4 or a = 6q + 5 but 6q + 0, 6q + 2, 6q + 4 are even numbers.

∴ a = 6q + 1 or 6q + 3 or 6q + 5

Therefore, any positive odd integer is of the form 6q+1 or 6q + 3 or 6q + 5 where q is some integer.

Question 3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

Solution :

Given:

An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns.

The maximum number of columns will be the H.C.F. of the number of army contingent of 616 members and the number of army band of 32 members.

Here, 616> 32

Real Numbers The HCF Of 32 And 616

Now, 616 = 32 × 19 + 8

Remainder = 8≠0

32 = 8 × 4 + 0

Remainder = 0

∵ The remainder is zero and the divisor is 8.

∴ H.C.F. = 8

Therefore, an army can march in 8 columns.

NCERT Exemplar Maths Class 10 Chapter 1 important questions

Question 4. Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

Solution :

Let ‘a’ be a positive integer.

From Euclid’s division algorithm,

Let q be the quotient and r the remainder when a is divided by 3,

∴ a = 3q + r where r = 0,1,2

⇒ a = 3q + 0 or a = 3q + 1 or a = 3q + 2

Now a = 3q

⇒ a2 = (3q)2

= 9q2 = 3(3q2)

= 3m

where, m = 3q2 is an integer.

Again, a = 3q + 1

⇒ a2 = (3 q+1)2 = 9q2+ 6q + 1

= 3(3q2+2q) +1 = 3m + 1

where, m = 3q2 + 2q is an integer and

a = 3q +2

⇒  a2 = (3 q + 2)2

= 9q2 + 12q + 4

= 3(3q2 + 4q + 1) + 1

= 3m + 1

where, m = 3q2 + 4q + 1 is an integer.

So, a2 = 3m or 3m + 1.

The square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

Hence Proved.

Question 5. Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.

Solution:

Let ‘a’ be a positive integer,

From Euclid’s division algorithm,

Let q be the quotient and r, be the remainder when a is divided by 3.

∴ a = 3q + r

where r = 0, 1, 2

⇒ a = 3q + 0 or a = 3q + 1 or a = 3q + 2

Now, a = 3

⇒ a3 = (3q)3 = 27q3 = 9(3q3) = 9m.

where = 3q3 is an integer.

Again, a = 3q + 1

⇒ \( a=3 q+1\quad a^3=(3 q+1)^3\)

⇒ \(27 q^3+3(3 q)(1)(3 q+1)+1\)

⇒ \(27 q^3+9 q(3 q+1)+1\)

⇒ \(9\left[3 q^3+3 q^2+q\right]+1=9 m+1\)

where, m = 3q3 + 3q2+q is an integer.

Again, a = 3q + 2

⇒ \( a^3=(3 q+2)^3\)

⇒ \(27 q^3+3(3 q)(2)(3 q+2)+8\)

⇒ \(9\left[3 q^3+6 q^2+4 q\right]+8\)

= 9m+8

Where \(m=3 q^3+6 q^2+4 q \text { is an integer. }\)

∴ a3 = 9m or 9m + 1 or 9m + 8

The cube of any positive integer is of the form 9m or 9m + 1 or 9m + 8.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Exercise 1.2

Question 1. Express each number as a product of its prime factors :

  1. 140
  2. 156
  3. 3825
  4. 5005
  5. 7429

Solution:

1. 140 = 2 × 2 × 5 × 7

= 22 × 5 × 7

Real Numbers Product Of Prime Factor 1

2.  156 = 2 × 2 ×3 × 13

= 22 × 3 × 13

Real Numbers Product Of Prime Factor 2

3. 3825 = 3 × 3 × 5 × 5 × 17

= 32 × 52 × 17

Real Numbers Product Of Prime Factor 3

4. 5005 = 5 × 7 × 11 × 13

Real Numbers Product Of Prime Factor 4

5. 7429 = 17 × 19 × 23

Real Numbers Product Of Prime Factor 5.

Question 2. Find the L.C.M. and H.C.F. of the following pairs of integers and verify that L.C.M. x H.C.F. = product of the two numbers.

  1. 26 and 91
  2. 510 and 92
  3. 336 and 54

Solution:

1. 26 = 2 × 13

91 = 13 × 7

H.C.F. = 13

L.C.M. = 2 × 13 × 7

= 182

Product of numbers = 26 x 91 = 2366

H.C.F. x L.C.M. = 13 x 182 = 2366

∴ Product of numbers = H.C.F. × L.C.M.

2. 510 = 2 × 3 × 5 × 17

92 = 2 × 2 × 23

H.C.F. = 2

L.C.M. =2 × 3 × 5 × 17 × 2 × 23

= 23460

Now, product of numbers = 510 × 92

= 46920

H.C.F. x L.C.M. = 2 x 23460 = 46920

∴ Product of numbers = H.C.F. x L.C.M.

336 = 2x2x2x2x3x7

54 = 2x3x3x3

H.C.F. =2×3 = 6

L.C.M. = 2x2x2x2x3x7x3x3

= 3024

Now, product of numbers = 336 x 54 = 18144

H.C.F. x L.C.M. = 6 x 3024 = 18144

∴ Product of numbers

H.C.F. x L.C.M

Question 3. Find the L.C.M and H.C.F of the following integers by applying the prime factorization method:

  1. 12. 15 and 21
  2. 17, 23 and 29
  3. 8. 9 and 25

Solution:

1. 12 = 2 × 2 × 3

15 =3 × 5

21 =3 × 7

∴ H.C.F. = 3

L.C.M. = 2×2×3×5×7

= 420

The L.C.M and H.C.F of 12. 15 and 21 is 420 and 3.

2. 17 = 17 × 1

23 = 1 × 23

29 = 1 × 29

∴ H.C.F. = 1

L.C.M. = 1 7 × 23 × 29 = 11339

The L.C.M and H.C.F of 17, 23 and 29 is 11339 and 1.

3. 8 = 2 × 2 × 2

9 = 3 × 3

25 =5 × 5

∴ H.C.F. = 1

L.C.M. = 2×2×2×3×3×5×5

= 1800

The L.C.M and H.C.F of 8. 9 and 25 is 1800 and 1.

Question 4. Given that H.C.F. (306, 657) = 9, find L.C.M. (306, 657).

Solution:

H.C.F. (306, 657) = 9

H.C.F. × L.C.M. = Product of numbers

9 × L.C.M. = 306 x 657

306 × 657

⇒ L.C.M. = \(\frac{306 \times 657}{9}\)

= 34 × 657

= 22338

L.C.M. of (306, 657) = 22338

Solved NCERT Exemplar for Class 10 Maths Real Numbers

Question 5. Check whether 6″ can end with the digit 0 for any natural number n.

Solution:

6 = 2 × 3

6n = (2 x 3)n

5 is not a factor of 6.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Exercise 1.3

Question 1. Prove that \(\sqrt{5}\) is irrational.

Solution:

Let \(\sqrt{5}\) is a rational number.

Let \(\sqrt{5}\) = where\(\frac{a}{b}\) and a andb are integers,

which have no common prime factors other than 1.

Now, \(\) = \(\frac{a}{b}\) ….(1)

⇒ a2 is divisible by 5.

⇒ a is divisible by 5

Let a = 5c

⇒ a2 = 25c2

⇒ 5b2 = 25c2 (From equation (1) )

⇒ b2 = 5c2

Now, 5c2 is divisible by 5.

⇒ b2 is divisible by 5.

⇒ b is divisible by 5

∴ 5 is a common factor of a and b.

It is opposite to our assumption.

∴ Our assumption is wrong.

i.e., \(\sqrt{5}\) is an irrational number.

Hence proved.

Question 2. Prove that \(3+2 \sqrt{5}\) is irrational:

Solution:

Let \(3+2 \sqrt{5}\) is a rational number

Let \(\) = \(\) where q* 0 and p and q are positive integers.

⇒ \(2 \sqrt{5}=\frac{p}{q}-3\)

⇒ \(\frac{p-3 q}{q}\)

⇒ \(\sqrt{5}=\frac{p-3 q}{2 q}\)

∵ p and q are integers and q≠0.

∴ \(\frac{p-3 q}{2 q}\) is a rational number.

From question 1,\(\sqrt{5}\) is an irrational.

Now, an irrational number and a rational number are equal.

Which is not possible.

So, it is opposite to our assumption.

∴ Our assumption is wrong.

i.e., \(3+2 \sqrt{5}\) is an irrational number.

Question 3. Prove that the following are irrationals :

  1. \(\frac{1}{\sqrt{2}}\)
  2. \(\frac{7}{\sqrt{5}}\)
  3. \(6+\sqrt{2}\)

Solution:

1. \(\frac{1}{\sqrt{2}}\)

Let \(\frac{1}{\sqrt{2}}\) is a rational number

Let \(\frac{1}{\sqrt{2}}=\frac{p}{q}\)= where q≠0 andp and q are integers.

⇒ \(q=\sqrt{2} p \Rightarrow q^2=2 p^2\) ……(1)

Now, 2p2 is divisible by 2.

⇒ q2 is divisible by 2.

⇒ q is divisible by 2.

Let q = 2r

⇒ q2 = 4r2

⇒ 2p2 = 4r2    (from equation 1)

⇒ p2 = 2r2

Now, 2r2 is divisible by 2.

⇒ p2 is divisible by 2.

⇒ p is divisible by 2.

∴ 2 is a common factor of p and q, which is opposite to our assumption.

So, our assumption is wrong i.e., \(\frac{1}{\sqrt{2}}\) is an So, our assumption is wrong i.e., irrational number.

2.  Let \(7 \sqrt{5}\) is a rational number.

Let \(7 \sqrt{5}=\frac{p}{q}\) where q*0 andp andq are integers.

⇒ \(\sqrt{5}=\frac{p}{7 q}\)

∵ p and are integers and 4 * 0

∴ \(\frac{p}{7 q}\) is a rational number

From question 1,\(\sqrt{5}\) is an irrational number. Now, an irrational number and a rational number are equal, which is impossible. So, it is opposite to our assumption:

∴ Our assumption is wrong, i.e., \(7 \sqrt{5}\) is an irrational number.

3.  Let \(6+\sqrt{2}\) is a rational number.

Let \(6+\sqrt{2}=\frac{p}{q}\) where q * 0 and p and q are integers.

⇒ \(\sqrt{2}=\frac{p}{q}-6\)

Now,  \(\frac{p}{q}-6\)  is rational number and \(\sqrt{2}\) is an irrational number.

Now, an irrational number and a rational number are equal.

Which is not possible.

So, it is opposite to our assumption.

∴ Our assumption is wrong.

Therefore, \(6+\sqrt{2}\) is an irrational number.

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Exercise 1.4

Question 1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion :

  1. \(\frac{13}{3125}\)
  2. \(\frac{17}{8}\)
  3. \(\frac{64}{455}\)
  4. \(\frac{15}{1600}\)
  5. \(\frac{29}{343}\)
  6. \(\frac{23}{2^3 5^2}\)
  7. \(\frac{129}{2^2 5^7 7^5}\)
  8. \(\frac{6}{15}\)
  9. \(\frac{35}{50}\)
  10. \(\frac{77}{210}\)

Solution:

1. \(\frac{13}{3125}\)

⇒ \(\frac{13}{3125}\)

⇒ \(=\frac{13}{5 \times 5 \times 5 \times 5 \times 5}\)

⇒ \(=\frac{13}{5^5}\)

⇒ \(\frac{13}{2^0 \times 5^5}\)

Its denominator is 2° × 55 whose prime factors are 2 and 5 only.

Therefore, the decimal expansion of \(\frac{13}{3125}\) is terminating.

2. \(\frac{17}{8}\)

⇒ \(\frac{17}{2 \times 2 \times 2}\)

⇒ \(=\frac{17}{2^3 \times 5^0}\)

Its denominator is 23 × 5° whose prime factors are 2 and 5 only.

Therefore, the decimal expansion of \(\) is terminating

3. \(\frac{64}{455}\)

⇒ \(\frac{64}{5 \times 7 \times 13}\)

Its denominator has the prime factors 7 and 13 other than 5, which is not in form 2m × 5n. So the decimal expansion of \(\frac{64}{455}\) is non-terminating and repeating.

4. \(\frac{15}{1600}\)

⇒ \(=\frac{3 \times 5}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5}\)

⇒ \(\frac{3}{2^6 \times 5^1}\)

Its denominator is 26 × 51 whose prime factors are 2 and 5 only.

Therefore, the decimal expansion of \(\frac{15}{1600}\) is terminating.

5. \(\frac{29}{343}\)

⇒ \(\frac{29}{7 \times 7 \times 7}\)

⇒ \(\frac{29}{7^3}\)

7 is a prime factor of its denominator which is not in the form 2m x 5n.

Therefore, the decimal expansion of is \(\frac{29}{343}\) non-terminating and repeating.

6. \(\frac{23}{2^3 \cdot 5^2}\)

Its denominator is 23. 52 whose prime factors are 2 and 5 only.

Therefore, the decimal expansion of \(\frac{23}{2^3 \cdot 5^2}\) is terminating.

7. \(\frac{129}{2^2 \cdot 5^7 \cdot 7^5}\)

Its denominator is 2n.57. 75 which is not in the form 2m × 5n.

Therefore, the decimal expansion of \(\frac{129}{2^2 \cdot 5^7 \cdot 7^5}\) is non-terminating and repeating.

8. \(\frac{6}{15}\)

⇒ \(\frac{3 \times 2}{3 \times 5}\)

⇒ \(\frac{2}{5}\)

Its denominator is 5 whose prime factor is 5 only.

Therefore, the decimal expansion of \(=\frac{6}{15}\) is terminating.

9. \(\frac{35}{50}\)

⇒ \(\frac{5 \times 7}{2 \times 5 \times 5}\)

⇒ \(\frac{7}{2 \times 5}\)

Its denominator is 2 x 5 whose prime factors are 2 and 5 only.

Therefore, the decimal expansion of \(\frac{35}{50}\) is terminating.

10. \(\frac{77}{210}\)

⇒ \(\frac{7 \times 11}{2 \times 5 \times 3 \times 7}\)

⇒ \(\frac{11}{2 \times 5 \times 3}\)

Its denominator is 2×5×3 which is not in the form 2nx5n

Therefore, the decimal expansion of \(\frac{77}{210}\) is non-terminating and repeating.

Real Numbers Euclid’s division lemma Class 10 Exemplar

Question 2. Write down the decimal expansions of those rational numbers above which have terminating decimal expansions.

Solution:

1. \(\frac{13}{3125}\)

⇒ \(\frac{13}{5^5}\)

⇒ \(\frac{13 \times 2^5}{5^5 \times 2^5}\)

⇒ \(\frac{13 \times 32}{(5 \times 2)^5}\)

⇒ \(\frac{416}{10^5}\)

=0.00416

\(\frac{13}{3125}\) =0.00416

2. \(\frac{17}{8}\)

⇒ \(\frac{17}{2^3}\)

⇒ \(\frac{17 \times 5^3}{2^3 \times 5^3}\)

⇒ \(\frac{17 \times 125}{(2 \times 5)^3}\)

\(\frac{17}{8}\) ⇒ \(\frac{17 \times 125}{(2 \times 5)^3}\)

3. \(\frac{15}{1600}\)

⇒ \(\frac{3 \times 5}{2^6 \times 5^2}\)

⇒ \(\frac{3 \times 5 \times 5^4}{2^6 \times 5^6}\)

⇒ \(\frac{15 \times 625}{(2 \times 5)^6}\)

⇒ \(\frac{9375}{10^6}\)

=0.009375

\(\frac{15}{1600}\) =0.009375

4. \(\frac{23}{2^3 5^2}\)

⇒ \(\frac{23 \times 5}{2^3 \times 5^3}\)

⇒ \(\frac{115}{(2 \times 5)^3}\)

⇒ \(\frac{115}{10^3}\)

=0.115

\(\frac{23}{2^3 5^2}\) =0.115

5. \(\frac{6}{15}\)

⇒ \(\frac{2 \times 3}{3 \times 5}\)

⇒ \(\frac{2}{5}\)

⇒ \(\frac{2 \times 2}{5 \times 2}\)

⇒ \(\frac{4}{10}=0.4\)

\(\frac{6}{15}\) ⇒ \(\frac{4}{10}=0.4\)

6. \(\frac{35}{50}\)

⇒ \(\frac{5 \times 7}{5 \times 5 \times 2}\)

⇒ \(\frac{5 \times 7 \times 2}{5^2 \times 2^2}\)

⇒ \(\frac{70}{(10)^2}\)

=0.7

\(\frac{35}{50}\) =0.7

Question 3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they rational’ and of the form \(\frac{p}{q}\) what can you say about the prime factors of q?

  1. 43.123456789
  2. 0.120120012000120000…
  3. \(43. \overline{123456789}\)

Solution:

1. 43.123456789 = \(\frac{43123456789}{1000000000}\)

which is in the form \(\frac{p}{q}\) So, it is a prime number

1000000000 has prime factors 2 and 5.

2. 0.120120012000120000…

Its decimal expansion is non-terminating and non-repeating. It cannot be expressed in the form \(\frac{p}{q}\)

So, it is an irrational number.

3. \(43. \overline{123456789}\)

Its decimal expansion is non-terminating and repeating.

So, it is a rational number.

The given number can be expressed in the form \(\frac{p}{q}\)

It has some other prime factor except 2 or 5.

NCERT Maths Class 10 Chapter 1 extra questions with solutions

NCERT Exemplar Solutions for Class 10 Maths Chapter 1 Real Numbers Multiple Choice Questions And Answers

Question 1. The decimal expansion of the rational number \(\frac{17}{2^2 \cdot 5}\)ends after the following decimal places :

  1. 1
  2. 2
  3. 3
  4. 4

Answer: 2. 2

Question 2. For some integer m, every odd integer is of the following form :

  1. m
  2. 2m
  3. m+1
  4. 2m+1

Answer: 4. 2m+1

Question 3. For some integer m, every even integer is of the following form :

  1. m
  2. 2m
  3. m+1
  4. 2m+1

Answer: 2. 2m

Question 4. 4-. The largest number from which 57 and 67 divided, leaving the remainders 5 and 7 respectively, is:

  1. 5
  2. 8
  3. 10
  4. 11

Answer: 3. 10

Question 5. The sum of a non-zero rational number and an irrational number is:

  1. Rational
  2. Irrational
  3. Zero
  4. None of these

Answer: 2. Irrational

Question 6. If a = x2y and b =xy2 then HCF (a, b) is

  1. x
  2. y
  3. xy
  4. x2y2

Answer: 3. xy

Question 7. The decimal expansion of \(\frac{3721}{625}\) ends after the following decimal places:

  1. 1
  2. 2
  3. 3
  4. 4

Answer: 4. 4

Question 8.  Given that LCM (132, 288) = 3168 then HCF (132, 288) is :

  1. 288
  2. 132
  3. 48
  4. 12

Answer: 4. 12

Class 10 Real Numbers theorem-based exemplar problems

Question 9. The sum of exponents of prime factors in the prime factorization of the number 144 is :

  1. 3
  2. 4
  3. 5
  4. 6

Answer: 4. 6

Question 10. The prime number is:

  1. 0
  2. 1
  3. 2
  4. 8

Answer: 3. 2

Question 11. If the L.C.M. of 26, 156 is 156, then the value of HCF is:

  1. 156
  2. 26
  3. 13
  4. 6

Answer: 2. 26

NCERT Exemplar Class 10 Maths Solutions

NCERT Exemplar Class 10 Maths Solutions